Skip to main content
Log in

Comparative analysis of the pig BAC sequence involved in the regulation of myostatin gene

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Myostatin (GDF8, MSTN) is a member of the transforming growth factor beta superfamily that is essential for proper regulation of skeletal muscle mass. In order to study its expression and regulatory mechanism deeply, we have presented a comparative analysis of about 170-kb pig BAC sequence containing the myostatin gene among pig, human and mouse. The genomic region is characterized by high interspersed repeats and low G+C content. As for the myostatin gene, a higher sequence similarity is found between human and pig than between these species and the mouse. One striking feature is that the structure of two TATA-boxes in the nearby downstream of CCAAT-box is identified in the promoter. Further analysis reveals that the TATA-box1 is responsible for the transcription in pig and human, but the TATA-box2 acts on the transcription in mouse. The other interesting feature is that two polyadenylation signal sequences (AATAAA) exist in 3’UTR of the pig myostatin gene. Moreover, a large number of potential transcription factor-binding sites are also identified in evolutionary conserved regions (ECRs), which may be associated with the regulation of myostatin. Many putative transcription factors play an important role in the muscle development, and the complex interaction between myostatin and these factors may be required for proper muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McPherron, A. C., Lawler, A. M., Lee, S. J., Regulation of skeletal muscle mass in mice by new TGF-beta superfamily member, Nature, 1997, 387: 83–90.

    Article  PubMed  CAS  Google Scholar 

  2. Thomas, M., Langley, B., Berry, C. et al., Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation, J. Biol. Chem., 2000, 275(51): 40235–40243.

    Article  PubMed  CAS  Google Scholar 

  3. Yamanouchi, K., Soeta, C., Naito, N., Tojo, H., Expression of myostatin gene in regenerating skeletal muscle of the rat and its localization, Biochemical and Biophysical Research Communications, 2000, 270: 510–516.

    Article  PubMed  CAS  Google Scholar 

  4. Kambadur, R., Sharma, M., Smith, T. P. L., Bass, J. J., Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle, Genome Res., 1997, 7: 910–916.

    PubMed  CAS  Google Scholar 

  5. Zimmers, T. A., Davies, M. V., Koniaris, L. G. et al., Induction of cachexia in mice by systemically administered myostatin, Science, 2002, 296: 1486–1488.

    Article  PubMed  CAS  Google Scholar 

  6. Ji, S., Losinki, R. L., Cornelius, S. G. et al., Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation, Am. J. Physiol., 1998, 275: R1265–1273.

    PubMed  CAS  Google Scholar 

  7. Sonstegard, T. S., Rohrer, G. A., Smith, T. P. L., Myostatin maps to porcine chromosome 15 by linkage and physical analyses, Anim. Genet., 1998, 29(1): 19–22.

    Article  PubMed  CAS  Google Scholar 

  8. Strail, A., Kopecny, M., Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8;MSTN) gene, Animal Genetics, 1999, 30(6): 468–470.

    Google Scholar 

  9. Jiang, Y. L., Li, N., Plastow, G. et al., Identification of three SNPs in the porcine myostatin gene (MSTN), Animal Biotechnology, 2002, 13: 173–178.

    Article  PubMed  CAS  Google Scholar 

  10. Sulston, J., Du, Z., Thomas, K. et al., TheC. elegans genome sequencing project a beginning, Nature, 1992, 365: 37–41.

    Article  Google Scholar 

  11. Ansari-Lari, M. A., Oeltjen, J. C., Schwartz, S. et al., Comparative sequence analysis of a gene-rich cluster at human chromosome 6, Genome Res., 1998, 8: 29–40.

    PubMed  CAS  Google Scholar 

  12. Kozak, M., An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs, Nuc. Acids Res., 1987, 15: 8125–8148.

    Article  CAS  Google Scholar 

  13. Kozak, M., An analysis of vertebrate mRNA sequence: Intimations of translational control, J. Cell Biol., 1991, 115: 887–903.

    Article  PubMed  CAS  Google Scholar 

  14. Mount, S. M., A catalogue of splice junction sequences, Nucleic Acids Res., 1982, 10: 459–472.

    Article  PubMed  CAS  Google Scholar 

  15. Pin, C. L., Konieczny, S. F., A fast fiber enhancer exists in the muscle regulatory factor 4 gene promoter, Biochem. Biophys. Res. Commun., 2002, 299: 7–13.

    Article  PubMed  CAS  Google Scholar 

  16. Langley, B., Thomas, M., Bishop, A. et al., Myostatin inhibits myoblast differentiation by down-regulating myoD expression, J. Biol. Chem., 2002, 277(51): 49831–49840.

    Article  PubMed  CAS  Google Scholar 

  17. Spiller, M. P., Kambadur, R., Jeanplong, F. et al., The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD, Mol. Cell Biol., 2002, 22(20): 7066–7082.

    Article  PubMed  CAS  Google Scholar 

  18. Denny, P., Swift, S., Connor, F., Ashworth, A., An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein, EMBO J., 1992, 11: 3705–3712.

    PubMed  CAS  Google Scholar 

  19. Ikeda, T., Zhang, J., Chano, T., Mabuchi, A., Fukuda, A., Identification and characterization of the human long form of Sox5 (L-SOX5) gene, Gene, 2002, 298: 59–68.

    Article  PubMed  CAS  Google Scholar 

  20. Marchat, L. A., Gomez, C., Perez, D. G. et al., Two CCAAT/enhancer binding protein sites are cis-activator elements of the Entamoeba histolytica EhPgp1 (mdr-like) gene expression, Cell Microbiol., 2002, 11: 725–737.

    Article  Google Scholar 

  21. Pan, Z., Hetherington, C. J., Zhang, D. E., CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development, J. Biol. Chem., 1999, 274: 23242–23248.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Trevijano, E. R., Iraburu, M. J., Fontana, L. et al., Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis, Genes Dev., 1997, 11:436–450.

    Article  Google Scholar 

  23. Andreucci, J. J., Grant, D., Cox, D. M. et al., Composition and function of AP-1 transcription complexes during muscle cell differentiation, J. Biol. Chem., 2002, 277(19): 16426–16432.

    Article  PubMed  CAS  Google Scholar 

  24. Morishita, R., Gibbons, G. H., Horiuchi, M., Kaneda, Y., Ogihara, T., Dzau, V. J., Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: Using decoy approach against AP-1 binding site, Biochem. Biophys. Res. Commun., 1998, 243(2): 361–367.

    Article  CAS  Google Scholar 

  25. Segil, N., Roberts, S. B., Heintz, N., Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity, Science, 1991, 254(5039): 1814–1816.

    Article  PubMed  CAS  Google Scholar 

  26. Di Lisi, R., Millino, C., Calabria, E. et al., Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I genein vitro andin vivo., J. Biol. Chem., 1998, 273: 25371–25380.

    Article  PubMed  Google Scholar 

  27. Lakich, M. M., Diagana, T. T., North, D. L., Whalen, R. G., MEF-2 and Oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal musclespecific gene, J. Biol. Chem., 1998, 273: 15217–15226.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao, Q., Kenessey, A., Ojamaa, K., Role of USF1 phosphorylation on cardiac alpha-myosin heavy chain promoter activity, Am. J. Physiol. Heart Circ. Physiol., 2002, 283: H213–219.

    PubMed  CAS  Google Scholar 

  29. Chen, Y. H., Layne, M. D., Watanabe, M., Yet, S. F., Perrella, M. A., Upstream stimulatory factors regulate aortic preferentially expressed gene-1 expression in vascular smooth muscle cells, J. Biol. Chem., 2001, 276: 47658–47663.

    Article  PubMed  CAS  Google Scholar 

  30. Lun, Y., Sawadogo, M., Perry, M., Autoactivation of Xenopus MyoD transcription and its inhibition by USF, Cell Growth Differ., 1997, 8: 275–282.

    PubMed  CAS  Google Scholar 

  31. Thomas, P. S., Kasahara, H., Edmonson, A. M. et al., Elevated expression of Nkx-2.5 in developing myocardial conduction cells, Anat. Rec., 2001, 263(3): 307–313.

    Article  PubMed  CAS  Google Scholar 

  32. Nishida, W., Nakamura, M., Mori, S. et al., A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes, J. Biol. Chem., 2002, 277(9): 7308–7317.

    Article  PubMed  CAS  Google Scholar 

  33. Kalenik, J. L., Chen, D., Bradley, M. E., Chen, S. J., Lee, T. C., Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1, Nucleic Acids Res., 1997, 25: 843–849.

    Article  PubMed  CAS  Google Scholar 

  34. Walowitz, J. L., Bradley, M. E., Chen, S., Lee, T., Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression, J. Biol. Chem., 1998, 273: 6656–6661.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, Z., Wang, Z. M., Delbono, O., Charge movement and transcription regulation of L-type calcium channel alpha(1S) in skeletal muscle cells, J. Physiol., 2002, 540: 397–409.

    Article  PubMed  CAS  Google Scholar 

  36. Onyango, P., Miller, W., Lehoezky, J. et al., Sequence and comparative analysis of the mouse 1-megabase region orthologoud to the human 11p5 imprinted domain, Genome Res., 2000, 10: 1697–1710.

    Article  PubMed  CAS  Google Scholar 

  37. Lander, E. S., Linton, L. M., Birren, B. et al., Initial sequencing and analysis of the human genome, Nature, 2001, 409: 860–892.

    Article  PubMed  CAS  Google Scholar 

  38. Waterston, R. H., Lindblad-Toh, K., Birney, E. et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, 420: 520–562.

    Article  PubMed  CAS  Google Scholar 

  39. Shibata, H., Yoda, Y., Kato, R. et al., A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with U2afbp-rs gene: An association with a short tandem repeat and hypermethylated region, Genomics, 1998, 4930–4937.

  40. Amarger, V., Nguyen, M., Laere, A. S. V. et al., Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs, Mamm Genome, 2002, 13: 388–398.

    Article  PubMed  CAS  Google Scholar 

  41. Boyle, A. L., Ballard, S. G., Ward, D. C., Differential distribution of long and short interspersed element sequence in mouse genome: Chromosome karyotyping by fluorescencein situ hybridization, Proc. Natl. Acad. Sci., 1990, 87: 7757–7761.

    Article  PubMed  CAS  Google Scholar 

  42. Kundu, T. K., Rao, M. R., CpG islands in chromatin organization and gene expression, J. Biochem. (Tokyo), 1999, 125(2): 217–222.

    PubMed  CAS  Google Scholar 

  43. Andersson, L., Archibald, A., Ashburner, M. et al., Comparative genome organization of vertebrates the first international workshop on comparative genome organization, Mamm. Genome, 1996, 7: 717–734.

    Article  PubMed  CAS  Google Scholar 

  44. Gispert, S., Dutra, A., Lieberman, A., Friedlich, D., Nussbaum, R. L., Cloning and genomic organization of the mouse gene Slc23a1 encoding a vitamin C transporter, DNA Research, 2000, 7: 339–345.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang, L., Ge, L., Parimoo, S., Stenn, K., Prouty, S. M., Human stearoyl-CoA desaturase: Alternative transcripts generated from a single gene by usage of tandem polyadenylation sites, Biochem. J., 1999, 340: 255–264.

    Article  PubMed  CAS  Google Scholar 

  46. Yang, J., Ratovitski, T., Brady, J. P. et al., Expression of myostatin pro domain results in muscular transgenic mice, Mol. Reprod. Dev., 2001, 60(3): 351–361.

    Article  PubMed  CAS  Google Scholar 

  47. Dias, P., Dilling, M., Houghton, P., The molecular basis of skeletal muscle differentiation, Semin. Diagn. Pathol., 1994, 11(1): 314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

The sequence data described in this paper have been submitted to GenBank under accession No. AY208121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Li, Y., Meng, Q. et al. Comparative analysis of the pig BAC sequence involved in the regulation of myostatin gene. Sci. China Ser. C.-Life Sci. 48, 168–180 (2005). https://doi.org/10.1007/BF02879670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879670

Keywords

Navigation