Skip to main content
Log in

Thermotropic liquid crystal polymer reinforced poly(butylene terephthalate) composites to improve heat distortion temperature and mechanical properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Radusch, “Handbook of Thermoplastic Polyesters”, S. Fakirov ed.), Vol. 1, Wiley-VCH Verlag GmbH, Weinheim, 1993.

    Google Scholar 

  2. R. Westdyk and D. McNally, “Handbook of Plastic Materials and Technology”, (I. I. Rubin ed.), John Wiley & Sons Inc., New York, 1990.

    Google Scholar 

  3. G. Kiss,Polym. Eng. Sci.,27, 410 (1987).

    Article  CAS  Google Scholar 

  4. D. Dutta, H. Fruitwala, A. Kohli, and R. A. Weiss,Polym. Eng. Sci.,30, 1005 (1990).

    Article  CAS  Google Scholar 

  5. R. E. S. Bretas and D. G. Baird,Polymer,33, 5233 (1992).

    Article  CAS  Google Scholar 

  6. S. H. Kim, “Modern Polyesters”, (J. Scheirs and T. E. Long eds.), Chap. 20, John Wiley Interscience, New York, 2004.

    Google Scholar 

  7. S. H. Kim, S. W. Park, and E. S. Gil,J. Appl. Polym. Sci.,67, 1383 (1997).

    Article  Google Scholar 

  8. S. H. Kim, S. W. Kang, J. K. Park, and Y. H. Park,J. Appl. Polym. Sci.,70, 1065 (1998).

    Article  CAS  Google Scholar 

  9. S. H. Kim and S. W. Kang,Fibers and Polymers,1, 83 (2000).

    Article  CAS  Google Scholar 

  10. D. S. Park and S. H. Kim,J. Appl. Polym. Sci.,87, 1842 (2003).

    Article  CAS  Google Scholar 

  11. S. G. Lee and S. H. Kim,Polym. Int.,52, 698 (2003).

    Article  CAS  Google Scholar 

  12. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani,Macromol. Res.,11, 62 (2003).

    CAS  Google Scholar 

  13. J. Y. Kim, O. S. Kim, S. H. Kim, and H. Y. Jeon,Polym. Eng. Sci.,44, 395 (2004).

    Article  CAS  Google Scholar 

  14. J. Y. Kim, S. H. Kim, and T. Kikutani,J. Polym. Sci. Part B: Polym. Phys.,42, 395 (2004).

    Article  CAS  Google Scholar 

  15. J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee,Macromol. Res.,13, 19 (2005).

    CAS  Google Scholar 

  16. S. T. Lim, H. S. Kim, and S. H. Kim,J. Korean Fiber Soc.,34(8), 543 (1997).

    CAS  Google Scholar 

  17. J. Y. Kim and S. H. Kim,J. Polym. Sci. Part B: Polym. Phys.,43, 3600 (2005).

    Article  CAS  Google Scholar 

  18. J. Y. Kim and S. H. Kim,J. Appl. Polym. Sci.,99, 2211 (2006).

    Article  CAS  Google Scholar 

  19. J. Y. Kim and S. H. Kim,Polym. Int.,55, 449 (2006).

    Article  CAS  Google Scholar 

  20. M. P. Sepe, ASTM Spec. Tech. Publ., STP 1369 (Limitations of test methods for plastics), pp.44–53, 2000.

  21. L. E. Alexander, “X-ray Diffraction Methods in Polymer Science”, Wiley, New York, 1969.

    Google Scholar 

  22. L. E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol. 2, Marcel Dekker, New York, 1974.

    Google Scholar 

  23. D. Jarus, A. Scheibelhoffer, A. Hiltner, and E. Baer,J. Appl. Polym. Sci.,60, 209 (1996).

    Article  CAS  Google Scholar 

  24. M. J. Troughton, G. R. Davies, and I. M. Ward,Polymer,30, 58 (1989).

    Article  CAS  Google Scholar 

  25. M. Yokouchi, Y. Sakakibara, Y. Chatani, H. Tadokoro, T. Tanaka, and K. Yoda,Macromolecules,9, 266 (1976).

    Article  CAS  Google Scholar 

  26. A. Kaito, M. Kyotani, and K. Nakayama,Macromolecules,23, 1035 (1990).

    Article  CAS  Google Scholar 

  27. T. Nakinpong, S. Bualek-Limcharoen, A. Bhutton, O. Aungsupravate, and T. Amornsakchai,J. Appl. Polym. Sci.,84, 561 (2002).

    Article  CAS  Google Scholar 

  28. R. Verma, H. Marand, and B. Hsiao,Macromolecules,29, 7767 (1996).

    Article  CAS  Google Scholar 

  29. C. G. Vonk,J. Appl. Cryst.,8, 81 (1973).

    Article  Google Scholar 

  30. G. Xue, G. Ji, H. Yan, and M. Guo,Macromolecules,31, 7706 (1998).

    Article  CAS  Google Scholar 

  31. A. C. Y. Wong,Composites: Part B,34, 199 (2003).

    Article  Google Scholar 

  32. J. L. Thomasson and W. M. Groenewoud,Composites: Part A,27, 555 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.Y., Kang, S.W. & Kim, S.H. Thermotropic liquid crystal polymer reinforced poly(butylene terephthalate) composites to improve heat distortion temperature and mechanical properties. Fibers Polym 7, 358–366 (2006). https://doi.org/10.1007/BF02875767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875767

Keywords

Navigation