Skip to main content
Log in

Role of prostaglandin in the regulation of gastric H+—Transporting system

  • Prostaglandins
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Prostaglandins and (PG) have been reported to be an important gastric acid suppressive factor. However, the mechanism underlying is yet to be clearly established. In vitro study with gastric microsomes in presence of both PGE2 and PGI2 shows a stimulation of gastric H+ K+-ATPase activity below 1X10−6M and 2.5X10−7M concentrations respectively. However, with further increase in concentrations of both PGE2 and PGI2, H+, K+-ATPase activity shows an inhibition but PGI2 completely obliterates the K+ stimulated part of H+, K+-ATPase activity at higher concentration. The H+-ion transport study using chambered frog gastric mucosa shows that both PGE2 and PGI2 inhibit H+-ion transport at 5X10−6 M and 10X10−6M concentrations respectively but the effect of PGI2 is reversible. These differential effects of PGE2 and PGI2 on microsomal H+, K+-ATPase and on H+ transport my be caused by the differential effects of these phospholipid mediators with the gastric mucosal cell membrane. This in vitro investigation shows the role of prostaglandin (s) as a physiological switch/regulator of gastric H+ ion transport leading to the cessation of gastric acid secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert, A., Nezamis, J. E., Lancaster, C. and Hanchar, A. J. (1979) Cytoprotection by prostaglandins in rats. Gastroenterol. 77, 433–443.

    CAS  Google Scholar 

  2. Lacy, E. R. and Ito, S. (1981) Cytology of prostaglandins treated rat gastric mucosa damage by absolute ethanol. Gastroenterol. 80, 1201–1205.

    Google Scholar 

  3. Shea-Donohue, P., Steel, L., Montcalm-Mazzilli, E. and Dubois, A. (1990) Aspirin-induced changes in gastric function: Role of endogenous prostaglandins and mucosal damage. Gastroenterol. 98, 284–292.

    CAS  Google Scholar 

  4. Miller, T. A. and Jacobson, E. D. (1979) Gastrointestinal cytoprotection by prostaglandins. Gut. 20, 75–87.

    Article  PubMed  CAS  Google Scholar 

  5. Soll, A. H. and Whittle, B. J. R. (1980) Interaction between prostaglandin and cyclic AMP in gastric mucosa. Prostagladin. 21 (suppl), 39–45.

    Article  Google Scholar 

  6. Sarosiek, J., Slomiany, A., Takagi, A. and Slomiany, B. L. (1983) Hydrogen ion diffusion in dog gastric mucous glycoprotein effect of associated lipids and covalently bound fatty acids. Biochem. Biophys. Res. Com. 118, 523–584.

    Article  Google Scholar 

  7. Ray, T. K. and Nandi, J. (1983) Regulation of the gastric microsomal (H+, K+)—transporting ATPase system by the endorgenous activator. Effect of phospholipase A2 treatment. Biochem. J. 212, 887–890.

    PubMed  CAS  Google Scholar 

  8. Ray, T. K. (1978) Gastric K+—stimulated adenosine triphosphatase. Demonstration of an endogenous activator. FEBS Letters. 92(1), 49–52.

    Article  PubMed  CAS  Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with Folin phenol reagent. J. Biol Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  10. Bandyopadhyay, S., Das, P. K., Wright, M. V., Nandi, J., Bhattacharyay, D. and Ray, T. K. (1978) Characteristics of a pure endogenous activity of the gastric H+, K+—ATPase system. Evaluation of the role as a possible intercellular regulator. J. Biol. Chem. 262(12), 5664–5670.

    Google Scholar 

  11. Sanui, H. (1974) Measurement of inorganic orthophosphate in biological material: extraction properties of butyl acetate. Anal. Biochem. 60, 489–504.

    Article  PubMed  CAS  Google Scholar 

  12. Ray, T. K. and Tague, L. L. (1978) Role of K+stimulated ATPase in H+ and K+ transport by bull frog gastric mucosa in vitro. In: Proceedings from the Symposium on gastric ion transport. Sweeden, 1977, Eds. Obrink, K. L. and From, G. Acta Physiol, Scand. Special suppl. p. 283–292.

  13. Song, Y. H. and Mardh, S. (1989) The occurrence of gastric and duodenal auto-antibodies in peptic ulcer idsease. Acta Physciol. Scand. 137, 535–539.

    Article  CAS  Google Scholar 

  14. Wallace, J. L. (1992) Prostaglandins, NSAIDs and cytoprotection. Gastroenterol Clin. North Amer. 21(3), 631–641.

    CAS  Google Scholar 

  15. Ote, S., Takashasi, M., Yoshiura, K., Hata, Y., Kawabe, T., Terano, A. and Omata, M. (1993) Antiulcer drugs and gastric prostaglandin E2: in vitro study. J. Gastroenterol. 17 (Suppl 1), 15–21.

    Google Scholar 

  16. Lichtengerger, L. M., Graziani, L. A., Dial, E. J. and Butler, B. A. (1983) Role of surfaceactive phospholipids on gastric cytoprotection. Science. 219, 1327–1329.

    Article  Google Scholar 

  17. Ray, T. K. and Fromm D. (1981) Cellular and subcellular aspects of the mechanism of gastric acid secretion. J. Surg. Res. 31, 496–505.

    Article  PubMed  CAS  Google Scholar 

  18. Scheiman, J. M., Kraus, E. R., Bonnville, L. A., Weinhold, P. A. and Boland, C. R. (1991) Synthesis and prostaglandin E2—induced secretion of surfactant phospholipid by isolated gastric mucous cells. Gastroenterol. 100, 1232–1240.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, B., Bandyopadhyay, S.K. Role of prostaglandin in the regulation of gastric H+—Transporting system. Indian J Clin Biochem 13, 41–45 (1998). https://doi.org/10.1007/BF02873442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02873442

Key words

Navigation