Skip to main content
Log in

Growth-room and field studies with seed tubers treated with ethylene and 1-methylcyclopropene (1-MCP) during storage

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Based on ethylene management in potato storage, we hypothesized that the applied treatments would modify number of sprouts per seed tuber. Thus, in combination with in-row spacing (closer for seed, wider for processing) in the field treatments will give either (1) a high number of small tubers destined for seed use, or (2) a relatively smaller number of large, uniform tubers suitable for processing. A three-year study (2001–2003), conducted with two french fry processing cultivars, Russet Burbank (RB) and Shepody (SH), aimed at the development of a novel modified atmosphere seed tuber storage treatment. Seed tubers were stored at 4 C from October to May of each year in a cold room under five modified atmospheric regimes: (1) air ventilation only (Control); (2) 4 µl L−1 ethylene applied continuously beginning in November and (3) beginning in February; (4) 1 µ1 L−1 MCP (1-methylcyclopropene) applied as a gas for 48 h only in early December followed by continuous 4 µl L−1 ethylene and (5) MCP alone applied as above. Each year, once a month (mid-January until end of April), a number of seed tubers was taken from each storage treatment, planted to pots and grown for 4 wk in a growth-room. In these studies, shoot emergence from the ethylene-treated seeds of both cultivars occurred significantly earlier, giving higher number of stems per tuber and stolons per stem than Control and MCP treatments. Moreover, the time to emergence after planting decreased with the increased length of storage. Field studies that were conducted from the end of May (planting) until October each year, produced similar trends (although not significant atP≤0.05) and resulted in a higher number of tubers per stem. In RB at the closer in row spacing (30 cm) used for seed production, ethylene enhanced yield of smaller tubers in the 30- to 115-g and 115- to 300-g categories. The ethylene storage treatments also increased tuber number per plant, but not the total mass of harvested potatoes. The MCP treatment, in combination with the wider in-row spacing (40 cm) used for the production of processing tubers, significantly increased the percentage of large tubers (>300 g). In SH, contrary to RB, the ethylene treatments did not alter tuber size distribution and the application of MCP reduced tuber size rather than increasing it. Results from this study suggest that both ethylene and MCP can be used in seed potato storage to influence the tuber size distribution of the crop from that seed.

Resumen

Basado en el manejo de etileno para el almacenamiento de papa, hemos asumido la hipótesis de que los tratamientos aplicados modificarían el número de brotes por tubérculo semilla, así en combinación con el espaciamiento en el campo (corto para semilla y largo para procesamiento) nos dará ya sea (1) un gran número de tubérculos pequeños destinados a semilla o (2) un número relativamente pequeño de tubérculos grandes y uniformes adecuados para procesamiento. Se realizó un estudio de tres años (2001 a 2003) con dos cultivares para procesamiento de papa frita, Russet Burbank (RB) y Shepody (SH), destinado al desarrollo de un novedoso tratamiento de atmósfera modificada para el almacenamiento de tubérculos semilla. Los tubérculos semilla fueron almacenados a 4 C de octubre a mayo de cada año en un ambiente frío bajo cinco regímenes atmosféricos modificados: (1) solamente ventilación de aire (Testigo); (2) 4 Llq de 1 etileno aplicado continuamente a partir de noviembre y (3) comenzando en febrero; (4) 1 Llq de 1 MCP (1-metilcloropropeno) aplicado como gas por 48 horas solamente a principios de diciembre seguido de 4 Llq de 1-etileno y (5) MCP solo aplicado en la forma anterior. Cada año, una vez al mes (mediados de enero hasta fines de abril), se tomaron unos cuantos tubérculos semilla de cada tratamiento de almacenaje, fueron sembrados en macetas y llevados a la cámara de crecimiento por 4 semanas. En estos estudios, la emergencia de brotes de las semillas tratadas con etileno se realizó en ambos cultivares mucho más antes, con un número mayor de tallos por tubérculo y estolones por tallo que en el testigo y los tratamientos con MCP. Más aún, el tiempo de emergencia después de la siembra disminuyó con un mayor tiempo de almacenamiento. Los estudios de campo que se realizaron desde fines de mayo (siembra) hasta octubre de cada año mostraron tendencias similares (aunque no significativas aP≤0.05) y dieron un mayor número de tubérculos por tallo. En RB a menor espaciamiento (30 cm) usado para la produción de semilla, el etileno elevó el rendimiento de tubérculos más pequeños en las categorías de 30–115 g y 115–300 g. Los tratamientos de almacenamiento con etileno también incrementaron el número de tubérculos por planta, pero no la masa total de papa cosechada. El tratamiento con MCP, en combinación con un mayor espaciamiento entre plantas (40 cm) usado para la producción de papa para procesamiento incrementó significativamente el porcentaje de tubérculos más grandes (>300 g). En SH, contrariamente a RB, los tratamientos con etileno no alteraron la distribución de tamaño y la aplicación de MCP redujo el tamaño del tubérculo en lugar de incrementarlo. Los resultados de este estudio sugieren que tanto el etileno como el MCP pueden usarse en almacenamiento para influenciar la distribución de tamaño del tubérculo del cultivo a diferencia de lo que se quiere para semilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Blankenship SM and JM Dole. 2003. 1-methylcyclopropene: a review. Postharv Biol Tech 28:1–26.

    Article  CAS  Google Scholar 

  • Bootsma A, R Gordon, G Read and WG Richards. 1992. Heat units for corn in Maritime Provinces. Atlantic Committee on Agrometeorology Publication 92-1: 8.

    Google Scholar 

  • British Potato Council. 1999. Research and development strategy document.

  • Burton WG, A van Es and KJ Hartmans. 1992. The physics and physiology of storage.In: PM Harris (ed), The Potato Crop. Chapman and Hall, London. pp 608–709.

    Google Scholar 

  • Claassens MMJ and D Vreugdenhil. 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res 43:347–369.

    Article  CAS  Google Scholar 

  • Ewing EE and PC Struik. 1992. Tuber formation in potato: induction, initiation and growth. Hort Rev 14:89–198.

    Google Scholar 

  • Guo H and JR Ecker. 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49.

    Article  PubMed  CAS  Google Scholar 

  • Harris PM. 1992. Mineral nutrition.In: PM Harris (ed), The Potato Crop. Chapman and Hall, London. pp 162–213.

    Google Scholar 

  • Hannapel DJ, H Chen, FM Rosin, AK Banerjee and PJ Davies. 2004. Molecular controls of tuberization. Amer J Potato Res 81:263–274.

    Article  CAS  Google Scholar 

  • Jeong JC, RK Prange and BJ Daniels-Lake. 2002. Long-term exposure to ethylene affects polyamine levels and sprout development in ‘Russet Burbank’ and ‘Shepody’ potatoes. J Amer Soc Hort Sci 127:122–126.

    CAS  Google Scholar 

  • Kader AA. 1985. Ethylene-induced senescence and physiological disorders in harvested horticultural crops. HortScience 20:54–57.

    CAS  Google Scholar 

  • Long CM, SS Snapp, DS Douches and RW Chase. 2004. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seedpiece spacing. Amer J Potato Res 81:347–357.

    Google Scholar 

  • Littell RC, GA Milliken, WW Stroup and RD Wolfinger. 1996. SAS@ System for Mixed Models. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Machackova I, TM Konstantinova, LI Segeeva, VN Lozhnikova, SA Golyankovskaya, ND Dudko, J Eder and NP Aksenova. 1998. Photoperiod control of growth, development and phytohormone balance inSolanum tuberosum L. Physiol Plant 102:272–278.

    Article  CAS  Google Scholar 

  • Marshall B and MW Young. 2004. Automated on-farm assessment of tuber size distribution.In: DKL MacKerron and AJ Haverkort (eds), Decision Support Systems in Potato Production. Wageningen Academic Publishers, The Netherlands. pp 100–116.

    Google Scholar 

  • Mikitzel LJ. 1993. Influencing seed tuber yield of Ranger Russet and Shepody potatoes with gibberellic acid. Am Potato J 71:667–675.

    Article  Google Scholar 

  • Montgomery DC. 2001. Design and Analysis of Experiments. 5th Ed. Wiley, New York.

    Google Scholar 

  • New Brunswick Department of Agriculture and Rural Development. 1997. Potato Varieties in Canada, 6th Ed. Agdex 161/33.

  • Prange RK, W Kalt, BJ Daniels-Lake, CL Liew, RT Page, JR Walsh, P Dean and R Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. J Amer Soc Hort Sci 123:463–469.

    CAS  Google Scholar 

  • Prange RK and JM DeLong. 2003. 1-Methylcyclopropene: The ‘magic bullet’ for horticultural products? Chron Hort 43(1):11–14.

    Google Scholar 

  • Prange RK, BJ Daniels-Lake, JC Jeong and M Binns. 2005a. Effects of ethylene and 1-methylcyclopropene on potato tuber sprout control and fry color. Amer J Potato Res 82:123–128.

    CAS  Google Scholar 

  • Prange RK, BJ Daniels-Lake and K Pruski. 2005b. Effects of continuous ethylene treatment on potato tubers: Highlights of 14 years of research. Acta Hort 684:165–170.

    CAS  Google Scholar 

  • Pruski K and B Daniels-Lake. 2003. Seed tuber storage conditions affect the tuber size in field production of two potato cultivars. The 87th Annual Meeting of PAA, Spokane, WA, USA. (abstr)

  • Pruski K, RK Prange and B Daniels-Lake. 2004. Seed tuber storage conditions affecting size of tuber in field production of three potato cultivars. Acta Physiol Plant 26(3): 48.

    Google Scholar 

  • SAS Institute Inc. 1999. SAS OnlineDoc®, Version 8. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Struik PC and SG Wiersema. 1999. Control and manipulation of physiological seed tuber quality.In: Seed Potato Technology. Wageningen Pers, Wageningen, The Netherlands. pp 95–131.

    Google Scholar 

  • Suttle JC. 1995. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiol Plant 95:233–240.

    Article  CAS  Google Scholar 

  • Suttle JC. 2003. Auxin-induced sprout growth inhibition: role of endogenous ethylene. Amer J Potato Res 80:303–309.

    CAS  Google Scholar 

  • Suttle JC. 2004. Physiological regulation of potato tuber dormancy. Amer J Potato Res 81:253–262.

    CAS  Google Scholar 

  • Van Ittersum MK and K Scholte. 1993. Shortening dormancy of seed potatoes by a haulm application of gibberellic acid and storage temperature regimes. Am Potato J 71:7–19.

    Article  Google Scholar 

  • Vreugdenhil D. 2004. Comparing potato tuberization and sprouting: Opposite phenomena? Amer J Potato Res 81:275–280.

    CAS  Google Scholar 

  • Xu X, D Vreugdenhil and AAM van Lammeren. 1998. Cell division and cell enlargement during potato tuber formation. J Expt Bot 49:573–582.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pruski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruski, K., Prange, R.K., Daniels-Lake, B.J. et al. Growth-room and field studies with seed tubers treated with ethylene and 1-methylcyclopropene (1-MCP) during storage. Am. J. Pot Res 83, 149–160 (2006). https://doi.org/10.1007/BF02872150

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872150

Additional key words

Navigation