Skip to main content
Log in

Resistance to late blight and soft rot in six potato progenies and glycoalkaloid contents in the tubers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Glycoalkaloids are anti-nutritional compounds commonly found in wildSolanum species used as resistance sources to major potato pathogens. It is therefore important for breeding purposes to know whether selecting for resistance using such species necessarily selects also for high glycoalkaloid contents in the tubers. To test this hypothesis, we used six partial progenies from crosses betweenSolanum tuberosum and accessions ofS. andigena, S. berthaultii, S. phureja, andS. vernei to investigate the possible correlation between resistance toPhytophthora infestans and/or toErwinia carotovora subsp.atroseptica and the concentration of glycoalkaloids in tubers. Concentrations of α-solanine and α-chaconine in the tubers segregated in each progeny, as did resistance to each pathogen. Some, but not all, clones from each progeny showed hypersensitive reactions to the isolate ofP. infestans used. Furthermore, clones within each progeny also differed for components of partial resistance toP. infestans, suggesting that all four wild species could be used as sources of both race-specific and partial resistance to late blight. With the exception of low, but statistically significant, correlations between concentration of α-solanine and two late blight resistance components (incubation period and spore production per unit lesion area) in progenies derived fromS. vernei, and despite a trend towards higher glycoalkaloid concentrations in the tubers of the clones most resistant to soft rot within progenies derived fromS. berthaultii andS. vernei, no consistent relationship between resistance to either disease and concentrations of α-solanine and/or α-chaconine was observed. These results indicate that neither race-specific nor partial resistance to late blight and soft rot in the accessions used as progenitors of resistance depend on high solanine or chaconine concentrations. These resistance sources could thus prove useful in breeding programs for improved behaviour againstP. infestans and/orE. carotovora.

Resumen

Los glicoalcaloides son compuestos antinutricionales que se encuentran presentes en las especies silvestres deSolanum usadas como fuentes de resistencia a los principales patógenos. Es por lo tanto importante con fines de mejoramiento, conocer si la selección hecha para obtener resistencia utilizando tales especies selecciona también necesariamente para contenidos altos de glicoalcaloides en los tubérculos. Para probar esta hipótesis, hemos utilizado seis progenies parciales provenientes de cruzamientos entreSolanum tuberosum y accesiones deS. andigena, S. berthaultii, S. phureja yS. vernei, con el objeto de investigar la existencia de una posible correlación entre la resistencia aPhytophthora infestans y/o aErwinia carotovora subsp.atroseptica y la concentración de glicoalcaloides en los tubérculos. Las concentraciones de α-solanina y α-chaconina en los tubérculos segregaron en cada progenie, asi como la resistencia a cada uno de los patógenos mencionados. Algunos, aunque no todos los clones en cada progenie mostraron reacciones de hipersensibilidad al aislamiento utilizado deP. infestans. Más aun, los clones dentro de cada progenie también mostraron diferencias en los componentes de la resistencia parcial aP. infestans, lo que sugiere que las cuatro especies de papa silvestre antes mencionadas pueden ser utilizadas como fuentes tanto para resistencia específica como para resistencia parcial aP. infestans. Con excepción de una reducida pero estadísticamente significativa correlación entre concentración de α-sblanina y dos componentes de resistencia al tizón tardío (periodo de incubación y producción de esporas por unidad de área de lesión) en progenies derivadas deS. vernei, y a pesar de una tendencia hacia altas concentraciones de glicoalcaloides en los tubérculos de los clones más resistentes a la pudrición blanda dentro de las progenies derivadas deS. berthaultii yS. vernei, no se ha observado una relación consistente en la resistencia a ambas enfermedades y la concentracios de α-solanina y/o α-chaconina. Estos resultados indican que ni la resistencia especifica, ni la resistencia parcial al tizón tardío y a la pudrición blanda en las accesiones utilizadas como progenitores de resistencia depende de la presencia de altas concentraciónes de solanina o de chaconina. Estas fuentes de resistencia pueden así ser de utilidad en los programas de mejoramiento para una mejor respuesta contraP. infestans y/oE. carotovora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen EH, and J Kuc. 1968. α-solanine and α-chaconine as fungitoxic compounds in extracts of Irish potato tubers. Phytopathology 58:776–781.

    CAS  Google Scholar 

  • Andreu A, C Oliva, S Distel, and G Daleo. 2001. Production of phytoalexins, glycoalkaloids and phenolics in leaves and tubers of potato cultivars with different degrees of field resistance after infection withPhytophthora infestans. Potato Res 44:1–9.

    Article  CAS  Google Scholar 

  • Colon LT, R Eijlander, DJ Budding, MT van Ijzendoorn, MMJ Pieters, and J Hoogendoorn. 1993. Resistance to potato late blight (Phytophthora infestans (Mont.) de Bary) inSolanum nigrum, S. villosum, and their sexual hybrids withS. tuberosum andS. demissum. Euphytica 66:55–64.

    Article  Google Scholar 

  • Deahl KL, WW Cantelo, SL Sinden, and LL Sanford. 1991. The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of fourSolanum chacoense clones. Am Potato J 68:659–666.

    Article  CAS  Google Scholar 

  • Fewell A, and JG Roddick. 1993. Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 33:323–328.

    Article  CAS  Google Scholar 

  • Fewell A, and JG Roddick. 1997. Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603.

    Article  CAS  Google Scholar 

  • Forrest JMS, and DT Coxon. 1980. The relationship between glycoalkaloids and resistance to the white potato cyst nematodeGlobodera pallida in potato clones derived fromSolanum vernei. Ann Appl Biol 94:265–268.

    Article  CAS  Google Scholar 

  • Gregory P. 1984. Glycoalkaloid composition of potatoes: diversity and biological implications. Am Potato J 61:115–122.

    Article  CAS  Google Scholar 

  • Hauben L, ERB Moore, L Vauterin, M Steenackers, J Mergaert, L Verdonck, and J Swings. 1998. Phylogenetic position of phytopathogens within theEnterobacteriaceae. System Appl Microbiol 21:384–397.

    CAS  Google Scholar 

  • Hawkes JG. 1958. Significance of wild species and primitive forms for potato breeding. Euphytica 7: 257–270.

    Google Scholar 

  • Hawkes JG. 1990.The potato — evolution, biodiversity and genetic resources. Belhaven Press, London, 259 pp.

    Google Scholar 

  • Hellenas KE, and C Branzell. 1997. Liquid chromatographic determination of the glycoalkaloids α-solanine and α-chaconine in potato tubers: NMKL interlaboratory study. J AOAC Int 80: 549–554.

    PubMed  CAS  Google Scholar 

  • Hogen Esch JA, and H Zingstra. 1974. Geniteurslijst voor Aardappelrassen 1973/74. C.O.A., Wageningen, The Netherlands.

    Google Scholar 

  • Holland HL, and GJ Taylor. 1979. Transformation of steroids and the steroidal alkaloid, solanine byPhytophthora infestans. Phytochemistry 18:437–440.

    Article  CAS  Google Scholar 

  • Joosten A. 1991. Geniteurslijst voor Aardappelrassen 1991. C.O.A., Wageningen, The Netherlands.

    Google Scholar 

  • Joosten A, and K van de Woude. 1985. Geniteurslijst voor Aardappelrassen 1985. C.O.A., Wageningen, The Netherlands

    Google Scholar 

  • Kuc J. 1984. Steroid glycoalkaloids and related compounds as potato quality factors. Am Potato J 61: 123–139.

    Article  CAS  Google Scholar 

  • McKee R. 1959. Factors affecting the toxicity of solanine and related alkaloids toFusarium caeruleum. J Gen Microbiol 20:686–696.

    PubMed  CAS  Google Scholar 

  • Morris SC, and TH Lee. 1984. The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum). Food Tech Australia 36:118–124.

    CAS  Google Scholar 

  • Percival GC, MS Karim, and GR Dixon. 1998. Influence of lightenhanced glycoalkaloids on resistance of potato tubers toFusarium sulphureum andFusarium solani var.coeruleum. Plant Pathol 47:665–670.

    Article  CAS  Google Scholar 

  • Percival GC, MS Karim, and GR Dixon. 1999. Pathogen resistance in aerial tubers of potato cultivars. Plant Pathol 48:768–776.

    Article  Google Scholar 

  • Rivera-Peña A. 1990. Wild tuber-bearing species ofSolanum and incidence ofPhytophthora infestans (Mont.) de Bary on the Western slopes of the volcano Nevado de Toluca. 5. Type of resistance toP. infestans. Potato Res 33:479–486.

    Article  Google Scholar 

  • Roddick JG. 1987. Antifungal activity of plant steroids. InEcology and metabolism of plant lipids (G. Fuller and W.D. Nes, eds), 286–303. American Chemical Society Symposium 325, Washington D.C., The American Chemical Society.

    Google Scholar 

  • Rousselle-Bourgeois F, and S Priou. 1995. Screening tuber-bearingSolanum spp. for resistance to soft rot caused byErwinia carotovora ssp.atroseptica (van Halle) Dye. Potato Res. 38:111–118.

    Article  Google Scholar 

  • Sarquis JI, NA Coria, I Aguilar, and A Rivera 2000. Glycoalkaloid content inSolanum, species and hybrids from a breeding program for resistance to late blight (Phytophthora infestans). Am J Potato Res 77: 295–302.

    Article  CAS  Google Scholar 

  • Sinden SL, LL Sanford, and RE Webb. 1984. Genetic and environmental control of potato glycoalkaloids. Am Potato J 61:141–156.

    Article  CAS  Google Scholar 

  • Swiezynski KM, MT Sieczka, LS Sujkowski, H Zarzycka, and E Zim-noch-Guzowska. 1991. Resistance toPhytophthora infestans in potato genotypes originating from wild species. Plant Breed 107:28–38.

    Article  Google Scholar 

  • Tingey WM. 1984. Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167.

    Article  CAS  Google Scholar 

  • Tingey WM, and SL Sinden. 1982. Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leafhopper, and potato flea-beetle inSolanum berthaultii. Am Potato J 59:95–106.

    Article  CAS  Google Scholar 

  • Tooley PW. 1990. Variation in resistance toPhytophthora infestans among 21Solanum verrucosum plant introductions. Am Potato J 67:491–498.

    Google Scholar 

  • Vleeshouwers VGAA, W van Dooijeweert, F Govers, S Kamoun, and LT Colon. 2000. The hypersensitive response is associated with host and nonhost resistance toPhytophthora infestans. Planta 210:853–864.

    Article  PubMed  CAS  Google Scholar 

  • Zingstra H, and W Scheijgrond. 1978. Geniteurslijst voor Aardappelrassen 1977/78. C.O.A, Wageningen, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Andrivon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrivon, D., Corbière, R., Lucas, JM. et al. Resistance to late blight and soft rot in six potato progenies and glycoalkaloid contents in the tubers. Am. J. Pot Res 80, 125–134 (2003). https://doi.org/10.1007/BF02870211

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870211

Additional key Words

Navigation