Skip to main content
Log in

Some mycological aspects of penicillin production

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

During the past ten years a multi-million dollar industry has developed, based on the mycological production of penicillin. Studies on factors influencing penicillin production have shown that selection of cultures, formulation of media, addition of intermediates in penicillin biosynthesis to the fermentations, and selection of optimum aeration and fermentation conditions play a part in the successful operation of this fermentation process. Although many studies have been made on the chemical changes occurring during the growth of the fungi and production of penicillin, little information has been gained on the mechanism of penicillin formation by fungi. However, these studies have helped in formulation of synthetic media which support growth and penicillin production equivalent to those obtained with media containing natural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Abraham, E. P. andChain, E. An enzyme from bacteria able to destroy penicillin. Nature146: 837. 1940.

    CAS  Google Scholar 

  2. —,et al. Further observations on penicillin. Lancet241 (2): 177–188. 1941.

    Google Scholar 

  3. Ainsworth, G. C.,et al. A method for the large-scale production of streptomycin by surface culture. Jour. Gen. Microbiol.1: 335–343. 1947.

    Google Scholar 

  4. Arnstein, H. R. V. andCook, A. H. The penicillin produced byAspergillus parasiticus. Brit. Jour. Exp. Path.28: 94–98. 1947.

    CAS  Google Scholar 

  5. —,et al. The biosynthesis of penicillins byPenicillium notatum. Biochem. Jour.42: xviii-xix. 1948.

    Google Scholar 

  6. Backus, M. P.,et al. Penicillin yields from new-mold strains. Jour. Am. Chem. Soc.68: 152–153. 1946.

    CAS  Google Scholar 

  7. -. Population patterns and other characteristics of Wisconsin strains ofPenicillium chrysogenum. Abs. 46th Ann. Meet., Bot. Soc. Am. 1949.

  8. Beadle, G. W.,et al. Improvements in cylinder plate method for penicillin assay. Jour. Bact.49: 101–104. 1945.

    CAS  Google Scholar 

  9. Behrens, O. K.,et al. Biosynthesis of penicillins. II. Utilization of deuterophenylacetyl-N15-dl-valine in penicillin biosynthesis. Jour. Biol. Chem.175: 765–770. 1948.

    CAS  Google Scholar 

  10. —,et al. Biosynthesis of penicillins. III. Preparation and evaluation of precursors for new penicillins. Jour. Biol. Chem.175: 771–791. 1948.

    CAS  Google Scholar 

  11. —,et al. Biosynthesis of penicillins. IV. New crystalline biosynthetic penicillins. Jour. Biol. Chem.175: 793–809. 1948.

    CAS  Google Scholar 

  12. -. Process and culture media for producing new penicillins. U. S. Patent 2,440,356. 1948.

  13. - andSoper, Q. F. Process and culture media for producing new penicillins. U. S. Patent 2,440,357. 1948.

  14. -,et al. Process and culture media for producing new penicillins. U. S. Patents 2,440,359; 2,440,360; 2,440,361; 2,440,358. 1948.

  15. -,et al. Process and culture media for producing new penicillins. U. S. Patents 2,479,295; 2,479,296; 2,479,297. 1949.

  16. Benedict, R. G.,et al. Penicillin. III. The stability of penicillin in aqueous solutions. Jour. Bact.49: 85–95. 1945.

    CAS  Google Scholar 

  17. —,et al. Penicillin. VII. Penicillinase. Arch. Biochem.8: 377–384. 1945.

    CAS  Google Scholar 

  18. Bernhauer, K. andRauch, J. [Observations on the formation of antibiotics byPenicillium cultures]. Zeit. Naturforschung4(b): 208–219. 1949. [German].

    Google Scholar 

  19. —,et al. [Penicillin production]. Zeit. Naturforschung 5(b): 103–115. 1950. [German].

    Google Scholar 

  20. Bonner, D. Production of biochemical mutations inPenicillium. Am. Jour. Bot.53: 788–790. 1946.

    Google Scholar 

  21. —. Studies on the biosynthesis of penicillin. Arch. Biochem.13: 1–9. 1947.

    Google Scholar 

  22. Boon, W. R.,et al. Penicillin: Analysis of the crude product by partition chromatography. 2. Chromatographic analysis of the penicillins from 2 strains ofP. notatum. Biochem. Jour.43: 262–265. 1948.

    CAS  Google Scholar 

  23. Bornstein, S. Action of penicillin on enterococci and other streptococci. Jour. Bact.39: 383–387. 1940.

    CAS  Google Scholar 

  24. Boxer, G. E. andEverett, P. M. Colorimetric determination of benzylpenicillin. Anal. Chem.21: 670–673. 1949.

    CAS  Google Scholar 

  25. Bowden, J. P. andPeterson, W. H. The role of cornsteep liquor in the production of penicillin. Arch. Biochem.9: 387–399. 1946.

    Google Scholar 

  26. Bowers, R. H.,et al. The effect of agitation and_ aeration on the respiration and production of penicillin byPenicillium chrysogenum. Abst. First Int. Cong. Biochem., p. 2/12. 1949.

  27. Breusch, F. L. The biochemistry of fatty acid catabolism. Adv. in Enzymology8: 343–423. 1948.

    CAS  Google Scholar 

  28. Brown, W. E.,et al. Factors affecting yields and types of penicillin. Abst. First Int. Cong. Biochem., p. 335/12 1949.

  29. — andPeterson, W. H. Effect of aeration and agitation on the production of penicillin byPenicillium chrysogenum Wis. Q176. Proc. Soc. Am. Bact.1: 46. 1948.

    Google Scholar 

  30. ——. Penicillin fermentation in a laboratory type Waldhof fermenter. Ind. & Eng. Chem.42: 1823–1826. 1950.

    CAS  Google Scholar 

  31. ——, Factors affecting the production of penicillin in semi-pilot-plant equipment. Ind. & Eng. Chem.42: 1769–1774. 1950.

    CAS  Google Scholar 

  32. Brownlee, K. A.,et al. The biological assay of penicillin by a modified plate method. Jour. Gen. Microbiol.3: 347–252. 1949.

    CAS  Google Scholar 

  33. Burkholder, P. R. andSinnott, E. W. Morphogenesis of fungus colonies in submerged shaken cultures. Am. Jour. Bot.32: 424–431. 1945.

    Google Scholar 

  34. Cahn, F. J. Citric acid fermentation on solid materials. Ind. & Eng. Chem.27: 201–204. 1935.

    CAS  Google Scholar 

  35. Calam, C. T. andHockenhull, D. J. D. The production of penicillin in surface culture using chemically denned media. Jour. Gen. Microbiol.3: 19–31. 1949.

    CAS  Google Scholar 

  36. Callaham, J. R. Penicillin. Large-scale production by deep fermentation. Chem. & Met. Eng.51: 94–98; 130–133. 1944.

    Google Scholar 

  37. Carbonisation et charbons actifs. Penicillin. Brit. Pat. 624,108. 1949.

    Google Scholar 

  38. Cardinal, E. V. andHedrick, L. R. Microbiological assay of cornsteep liquor for amino acid content. Jour. Biol. Chem.172: 609–612. 1948.

    CAS  Google Scholar 

  39. Cartland, G. F.,et al. Penicillin X manufacture. U. S. Patent 2,487,018. 1949.

  40. Chain, E.,et al. Penicillin as a chemotherapeutic agent. Lancet239(2): 226–228. 1940.

    Google Scholar 

  41. —. The chemistry of penicillin. Ann. Rev. Biochem.17: 659–704. 1948.

    Google Scholar 

  42. Challinor, S. W. Production of penicillin. Nature150: 688. 1942.

    Google Scholar 

  43. — andMacNaughton, J. The production of penicillin. Jour. Path. & Bact.55: 441–446. 1943.

    CAS  Google Scholar 

  44. Chandler, V. L. andShaw, R. D. Dropping device for cylinder plate assay of penicillin. Science104: 275. 1946.

    PubMed  Google Scholar 

  45. Clarke, H. T.,et al. The chemistry of penicillin. 1949.

  46. Clayton, J. C.,et al. Preparation of penicillin. Improved method of isolation. Biochem. Jour.38: 452–458. 1944.

    CAS  Google Scholar 

  47. Clifton, C. E. Large-scale production of penicillin. Science98: 69. 1943.

    PubMed  CAS  Google Scholar 

  48. Clutterbuck, P. W.,et al. Studies in the biochemistry of microorganisms. XXVI. The formation from glucose by members of thePenicillium chrysogenum series of a pigment, an alkali-soluble protein, and penicillin—the antibacterial substance of Fleming. Biochem. Jour.26: 1907–1918. 1932.

    CAS  Google Scholar 

  49. Coghill, R. D. Penicillin; science’s Cinderella. Chem. Eng. News22: 588–593. 1944.

    CAS  Google Scholar 

  50. — andKoch, R. S. Penicillin, a wartime accomplishment. Chem. Eng. News23: 2310–2316. 1945.

    CAS  Google Scholar 

  51. -. andMoyer, A. J. Method of production of increased yields of penicillin. U. S. Patent 2,423,873. 1947.

  52. Cook, A. H. andLacey, M. S. An antibiotic fromAspergillus parasiticus. Nature153: 460. 1944.

    CAS  Google Scholar 

  53. Cook, R. P. andTulloch, W. J. The production of penicillin on media made from vegetable extracts, particularly extracts of pea. Jour. Path. & Bact.54: 553–557. 1944.

    Google Scholar 

  54. —andBrown, M. B. Some constituents of aqueous extracts of ground dried peas. Biochem. Jour.39: 24. 1945.

    Google Scholar 

  55. —,et al. The production of penicillin using fractions obtained from aqueous extracts of peas (Pisum sativum). Biochem. Jour.39: 314–317. 1945.

    CAS  Google Scholar 

  56. — andBrown, M. B. Effect of source of N in the medium on the formation of penicillin by surface cultures ofPenicillium notatum. Nature159: 376–377. 1947.

    CAS  Google Scholar 

  57. Coulthard, C. E.,et al. Notatin: an antibacterial glucose-aerodehydrogenase fromPenicillium notatum Westling. Nature150: 634–635. 1942.

    CAS  Google Scholar 

  58. —,et al. Notatin: an antibacterial glucose-aerodehydrogenase fromPenicillium notatum Westling andPenicillium reticulosum sp. nov. Biochem. Jour.39: 24–36. 1945.

    CAS  Google Scholar 

  59. Cragwall, G. O. The commercial production of penicillin.In Antibiotics, ed. by G. W. Irving and H. T. Herrick. 1949.

  60. Craig, J. T.,et al. The determination of penicillin G using C13 isotope as a tracer. Abst. 116th meeting. Am. Cherm. Soc. p. 6B. 1949.

  61. Craig, L. C.,et al. Separation and characterization of the penicillins by the method of counter-current distribution. [Unpublished report distributed by the Research Grants Office, National Institute of Health]. 1946.

  62. —,et al.Separation and characterization of some penicillins by the method of counter-current distribution. Tour. Biol. Chem.168: 665–686. 1947.

    CAS  Google Scholar 

  63. Demerec, M. Production of penicillin. U. S. Patent 2,445,748. 1948.

  64. Dimond, A. E. andPeltier, G. L. Controlling pH of cultures ofPenicillium notatum through its C and N nutrition. Am. Jour. Bot.42: 46–50. 1945.

    Google Scholar 

  65. Donovick, R.,et al. Studies on the quantitative differential analyses of mixtures of several essentially pure penicillin types. Jour. Bact.54: 425–442. 1947.

    CAS  Google Scholar 

  66. Duckworth, R. B. andHarris, G. C. M. The morphology ofPenicillium chrysogenum in submerged fermentations. Trans. Brit. Myc. Soc.32: 224–235. 1950.

    Google Scholar 

  67. Dulaney, E. L. Some aspects of penicillin production byAspergillus nidulans. Mycologia39: 570–581. 1947.

    Google Scholar 

  68. —. Penicillin production by theAspergillus nidulans group. Mycologia39: 582–586. 1947.

    Google Scholar 

  69. Duthie, E. S. The production of penicillinase by organisms of thesubtilis group. Brit. Jour. Exp. Path.25: 96–100. 1944.

    CAS  Google Scholar 

  70. —. Production of stable potent preparations of penicillinase. Jour. Gen. Microbiol.1: 370–377. 1947.

    Google Scholar 

  71. Eisenberg, G. M. andMetzendorf, J. L. Method for producing penicillin by mold culture. U. S. Patent 2,422,777. 1947.

  72. Elder, A. L. andMonroe, L. M. Penicillin, wartime growing pains of the industry. Chem. & Met. Eng.51: 103–105. 1944.

    CAS  Google Scholar 

  73. —. Penicillin. Sci. Mon.58: 405–409. 1944.

    CAS  Google Scholar 

  74. Fischer, E. Science106: 146. 1947.

    Google Scholar 

  75. Fisher, A. M. Antibacterial properties of crude penicillin. Bull. Johns Hopkins Hosp.73: 343–378. 1943.

    CAS  Google Scholar 

  76. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation ofB. influenzae. Brit. Jour. Exp. Path.10: 226–236. 1929.

    CAS  Google Scholar 

  77. Fleming, A. On specific antibacterial properties of penicillin and potassium tellurite incorporating method of demonstrating some bacterial antagonisms. Jour. Path. & Bact.35: 831–842. 1932.

    CAS  Google Scholar 

  78. Florey, H. W. Penicillin: its development for medical uses. Nature153: 40–42. 1942.

    Google Scholar 

  79. —,et al. Penicillin-like antibiotics from various species of molds. Nature154: 268. 1944.

    CAS  Google Scholar 

  80. -,et al. Antibiotics: A survey of penicillin, streptomycin, and antimicrobial substances from fungi, actinomycetes, bacteria, and plants. (Volume II: Penicillin and Streptomycin). 1949.

  81. Ford, J. H. Hydroxylamine method of determining penicillins. Anal. Chem.19: 1004–1006. 1947.

    CAS  Google Scholar 

  82. Fortune, W. B.,et al. Antibiotics development. Ind. & Eng. Chem.42: 191–198. 1950.

    CAS  Google Scholar 

  83. Foster, J. W. Quantitative estimation of penicillin. Jour. Biol. Chem.144: 285–286. 1942.

    CAS  Google Scholar 

  84. —. Microbiological aspects of penicillin formation. Jour. Bact.45: 65. 1943.

    Google Scholar 

  85. — andWoodruff, H. B. Improvements in the cup assay for penicillin. Jour. Biol. Chem.148: 173. 1943.

    Google Scholar 

  86. — andWilker, B. L. Microbiological aspects of penicillin. II. Turbidimetric studies on penicillin inhibition. Jour. Bact.46: 377–389. 1943.

    CAS  Google Scholar 

  87. — andWoodruff, H. B. Microbiological aspects of penicillin. I. Methods of assay. Jour. Bact.46: 187–202. 1943.

    CAS  Google Scholar 

  88. —,et al Microbiological aspects of penicillin. III. Production of penicillin in surface cultures ofPenicillium notatum. Jour. Bact.46: 421–433. 1943.

    CAS  Google Scholar 

  89. — andWoodruff, H. B. Microbiological aspects of penicillin. VI. Procedures for the cup assay for penicillin. Jour. Bact.47: 43–58. 1944.

    CAS  Google Scholar 

  90. —. Acid formation from penicillin during enzymatic inactivation. Science101: 205. 1945.

    PubMed  CAS  Google Scholar 

  91. — andKarow, E. O. Microbiological aspects of penicillin. VIII. Penicillin from different fungi. Jour. Bact.49: 19–29. 1945.

    CAS  Google Scholar 

  92. —,et al. Microbiological aspects of penicillin. V. Conidiospore formation in submerged cultures ofPenicillium notatum. Jour Bact.50: 365–368. 1945.

    CAS  Google Scholar 

  93. —,et al. Microbiological aspects of penicillin. IV. Production of penicillin in submerged cultures ofPenicillium notatum. Jour. Bact.51: 465–478. 1946.

    CAS  Google Scholar 

  94. —,et al. Microbiological aspects of penicillin. IX. Cottonseed meal as a substitute for cornsteep liquor in penicillin production. Jour. Bact.51: 695–698. 1946.

    CAS  Google Scholar 

  95. - andMcDaniel, L. E. Process for the production of penicillin. U. S. Patent 2,448,790. 1948.

  96. - and -. Production of penicillin in cottonseed meal medium. U. S. Patent 2,448,791. 1948.

  97. -. Process of fermentation. U. S. Patent 2,458,495. 1949.

  98. -. Chemical activities of fungi. (Chapter 19). 1949.

  99. Frank, M. C.,et al. The production of spores byPenicillium notatum. Jour. Gen. Microbiol.2: 70–79. 1948.

    CAS  Google Scholar 

  100. Fromageot, C.,et al. [Changes in amino acid concentrations in cornsteep liquid media during culture ofPenicillium chrysogenum]. Bull. Soc. Chim. Biol.31: 689–695. 1949. [French].

    CAS  Google Scholar 

  101. Gailey, F. B. Unpublished studies onin vitro synthesis of penicillin. Univ. of Wis. 1944.

  102. -. Unpublished studies on existence of penicillinase in cultures ofPenicillium notatum. Univ. Wis. 1944.

  103. —,et al. A comparison of penicillin producing strains ofPenicillium notatum-chrysogenum. Jour. Bact.52: 129–140. 1946.

    CAS  Google Scholar 

  104. Gavronsky, J. O. Penicillin grown from nutrient medium prepared from potato extract. Brit. Med. Jour.2: 82–83. 1945.

    Google Scholar 

  105. Gilbert, W. J. andHickey, R. J. Production of conidia in submerged cultures ofPenicillium notatum. Jour. Bact.51: 731–733. 1946.

    CAS  Google Scholar 

  106. Glaxo Laboratories, Ltd., British Drug Houses, Ltd., Bide, A. E., Mead, T. H., Lester-Smith, E. andStack, M. V. Improved penicillin culture media. Brit. Pat. 586,930. 1947.

  107. Goodall, R. R. andLevi, A. A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Analyst72: 277–290. 1947.

    Google Scholar 

  108. Gordon, J. J.,et al. Methods of penicillin production in submerged culture on a pilot-plant scale. Jour. Gen. Microbiol.1: 187–202. 1947.

    CAS  Google Scholar 

  109. Goth, A. andBush, M. T. Rapid method for estimation of penicillin. Anal. Chem.16: 451–452. 1944.

    CAS  Google Scholar 

  110. Grenfell, E.,et al. Microbiological aspects of the submerged culture production of penicillin on a pilot-plant scale. Tour. Gen. Microbiol.1: 171–186. 1947.

    CAS  Google Scholar 

  111. Halpern, P. E.,et al. Effect of specific amino acids on the yield of penicillin in submerged culture. Science102: 230–231. 1945.

    PubMed  CAS  Google Scholar 

  112. Hanson, H. J.,et al. Variation inPenicillium notatum induced by the bombardment of spores with neutrons. Jour. Bact.51: 9–18. 1946.

    CAS  Google Scholar 

  113. Heatley, N. G. A method for the assay of penicillin. Biochem. Jour.38: 61–65. 1944.

    CAS  Google Scholar 

  114. Herrick, H. T.,et al. Apparatus for the application of submerged mold fermentation under pressure. Ind. & Eng. Chem.27: 681–686. 1935.

    CAS  Google Scholar 

  115. Higuchi, K.,et al. Effect of phenylacetic acid derivatives on the types of penicillin produced byPenicillium chrysogenum Q176. Jour. Am. Chem. Soc.68: 1669–1670. 1946.

    CAS  Google Scholar 

  116. — andPeterson, W. H. Estimation of types of penicillins in broths and finished products. Anal. Chem.19: 68–71. 1947.

    CAS  Google Scholar 

  117. Hildebrandt, F. M. Recent progress in industrial fermentation. Adv. in Enzymology7: 559–560. 1947.

    Google Scholar 

  118. Hobson, A. J. andGalloway, L. D. Home-made penicillin. Lancet246 (1): 164. 1944.

    Google Scholar 

  119. Hockenhull, D. J. D. Studies in penicillin production byPenicillium notatum in surface culture. I. Preliminary study of the metabolism of C, N, S, and P. Biochem. Jour.40: 337–343. 1946.

    CAS  Google Scholar 

  120. —. Studies in penicillin production byPenicillium notatum in surface culture. II. Further studies in the metabolism of sulfur. Biochem. Jour.43: 498–504. 1948.

    CAS  Google Scholar 

  121. —,et al. The biosynthesis of the penicillins. Arch. Biochem.23: 160–161. 1949.

    PubMed  CAS  Google Scholar 

  122. Hollaender, A. The mechanism of radiation effects and the use of radiation for the production of mutations with improved fermentation. Ann. Mo. Bot. Garden32: 165–178. 1945.

    Google Scholar 

  123. — andZimmer, E. The effect of U-V radiation and X-rays on mutation production inP. notatum. Genetics30: 8. 1945.

    Google Scholar 

  124. Holtman, D. F. Increasing penicillin yields with corn oil. Jour. Bact.49: 313–314. 1945.

    CAS  Google Scholar 

  125. Jacobs, W. L.,et al. General purpose fermentation plant. Ind. & Eng. Chem.40: 759–764. 1948.

    CAS  Google Scholar 

  126. Jarvis, F. G. Synthetic media for the production of penicillin. M. Sc. Thesis. Univ. Wis. 1946.

  127. - andJohnson, M. J. The role of the constituents of synthetic media for penicillin production byP. chrysogenum Q176 in shake flasks. Abst. 114th Meeting, Am. Chem. Soc, p. 12B–13B. 1946.

  128. ——. The role of the constituents of synthetic media for penicillin production. Jour. Am. Chem. Soc.69: 3010–3015. 1947.

    CAS  Google Scholar 

  129. ——. The mineral nutrition ofPenicillium chrysogenum Q176. Jour. Bact.59: 51–60. 1950.

    CAS  Google Scholar 

  130. Jennison, M. W. andIrvine, J. W. The effect of beta-radiation on the production of penicillin. Jour. Bact.51: 598.

  131. Johns, M. E.,et al. Moulds producing penicillin-like antibiotics. Nature158: 446. 1946.

    Google Scholar 

  132. Johnson, H. G. Treatment of fermentation liquors. U. S. Patent 2,443,825. 1948.

  133. Johnson, M. J. Metabolism of penicillin producing molds. Ann. N. Y. Acad. Sci.48: 57–66. 1946.

    CAS  Google Scholar 

  134. —,et al. Penicillin production by a superior strain of mold. Science103: 504–505. 1946.

    PubMed  Google Scholar 

  135. Joslyn, D. A. Penicillin assay. Science99: 21. 1944.

    PubMed  CAS  Google Scholar 

  136. Karnovsky, M. L. andJohnson, M. J. Filter paper chromatography of penicillin broths. Anal. Chem.21: 1125–1132. 1949.

    CAS  Google Scholar 

  137. Kluener, R. G. A paper cromatographic method for the quantitative estimation of penicillin entities. Jour. Bact.57: 101–109. 1949.

    CAS  Google Scholar 

  138. Kluyver, A. J. andPerquin, L. H. C. Zur Methodik der Schimmelstoffwechseluntersuchung. Biochem. Zeit.266: 68–81. 1933.

    CAS  Google Scholar 

  139. Knight, S. G. andFrazier, W. C. The control of contaminants in penicillin fermentations by antiseptic chemicals. Jour. Bact.50: 505–516. 1945.

    CAS  Google Scholar 

  140. Knight, S. G. andFrazier, W. C. The effect of cornsteep ash on penicillin production. Science102: 617–618. 1945.

    PubMed  Google Scholar 

  141. -. The effect of certain inorganic constituents on penicillin production and mold metabolism in shake flask fermentation. Ph.D. Thesis. Univ. Wis. 1946. [Abstracted in Summaries of Doctoral Dissertations 1941–1947. Univ. Wis. Press, 1949].

  142. —. The l-amino oxidase of molds. Jour. Bact.55: 401–408. 1948.

    CAS  Google Scholar 

  143. Knoedler, E. L. andBabcock, S. H. Industrial wastes. Pharmaceutical and biological plants. Ind. & Eng. Chem.39: 578–582. 1947.

    CAS  Google Scholar 

  144. Knudsen, L. F. andRandall, W. A. Penicillin assay and its control chart analysis. Jour. Bact.50: 187–200. 1945.

    CAS  Google Scholar 

  145. Kocholaty, W. Cultural characteristics ofPenicillium notatum in relation to the production of antibacterial substance. Indication of the dual nature of the antibacterial substance. Jour. Bact.44: 469–477. 1942.

    CAS  Google Scholar 

  146. —. Purification and properties of the second antibacterial substance produced byPenicillium notatum. Science97: 186–187. 1943.

    PubMed  CAS  Google Scholar 

  147. —. Purification and properties of penatin. The second antibacterial substance produced byPenicillium notatum Westling. Arch. Biochem.2: 73–86. 1943.

    CAS  Google Scholar 

  148. Koerber, W. L. Process for producing penicillin. U. S. Patent 2,424,832. 1947.

  149. Koffler, H.,et al. Chemical changes in submerged penicillin fermentations. Jour. Bact.50: 516–548. 1945.

    Google Scholar 

  150. Koffler, H.,et al. The effect of certain chemicals on penicillin production and mold metabolism in shaken flask fermentations. Jour. Bact.50: 549–559. 1945.

    CAS  Google Scholar 

  151. —,et al. Metabolic changes in submerged penicillin fermentations on synthetic media. Jour. Bact.51: 385–392. 1946.

    CAS  Google Scholar 

  152. —,et al. The effect of certain mineral elements on the production of penicillin in shake flasks. Jour. Bact.53: 115–123. 1947.

    CAS  Google Scholar 

  153. — andCohen, M. The effect of certain antifoam agents and fatty acids on the stability of penicillin. Proc. Soc. Am. Bact.1: 45. 1948.

    Google Scholar 

  154. - andGoldschmidt, M. The effect of certain antifoam agents on penicillin yields obtained during submerged growth ofPenicillium chrysogenum Q176. Abst. 46th meeting Bot. Soc. Am. 1949.

  155. Lawrence, C. A. Action of clarase on penicillin. Science99: 15. 1944.

    PubMed  Google Scholar 

  156. LePage, G. A.,et al. Production and purification of penicillinase. Jour. Biol. Chem.166: 465–472. 1946.

    Google Scholar 

  157. Lester-Smith, E. andBide, A. E. Biosynthesis of the penicillins. Biochem. Jour.42: 17–18. 1948.

    Google Scholar 

  158. - and -. Manufacture of penicillin. U. S. Patent 2,475,920. 1949.

  159. Liggett, R. W. andKoffler, H. Cornsteep liquor in microbiology. Bact Rev.12: 297–311. 1948.

    CAS  Google Scholar 

  160. Lilly, C. H. Process of mold fermentation and apparatus therefor. U. S. Patent 1,936,983. 1933.

  161. MacMahan, J. R. Improved short time turbidimetric assay for penicillin. Jour. Biol. Chem.153: 249–258. 1944.

    Google Scholar 

  162. May, O. E.,et al. Semi-plant scale production of gluconic acid by mold fermentation. Ind. & Eng. Chem.21: 1198–1203. 1929.

    CAS  Google Scholar 

  163. McCormack, R. B. Method of producing penicillin. U. S. Patent 2,457,585. 1948.

  164. -. Method of producing penicillin. U. S. Patent 2,437,918. 1948.

  165. McKee, C. M. andRake, G. W. Biological experiments with penicillin. Jour. Bact.43: 645. 1942.

    Google Scholar 

  166. — andMacPhillamy, H. B. An antibiotic substance produced by submerged cultivation ofAspergillus flavus. Proc. Soc. Exp. Biol. & Med.53: 247–248. 1943.

    CAS  Google Scholar 

  167. —,et al. Studies ofAspergillus flavus. II. The production and properties of a penicillin-like substance—flavicidin. Jour. Bact.47: 187–197. 1944.

    CAS  Google Scholar 

  168. McQuareie, E. B.,et al. Studies on penicillinase. Arch. Biochem.5: 307–315. 1944.

    Google Scholar 

  169. Mead, T. H. andStack, M. V. Penicillin precursors in cornsteep liquor. Biochem. Jour.42: 18. 1948

    Google Scholar 

  170. -,et al. Manufacture of penicillin. U. S. Patent 2,451,853. 1948.

  171. Meyers, R. S.,et al. Use of gauze inoculated withPenicillium notatum or impregnated with crude penicillin in treatment of surface infections. New Eng. Jour. Med.231: 761–764. 1944.

    Google Scholar 

  172. Moyer, A. J.,et al. The production of gluconic acid byPenicillium chrysogenum. Centralb. Bakt. II95: 311–316. 1937.

    Google Scholar 

  173. -. [Personal communication to M. J. Johnson]. 1943.

  174. — andCoghill, R. D. Penicillin. VIII. Production of penicillin in surface cultures Jour. Bact.51: 57–78. 1946.

    CAS  Google Scholar 

  175. ——. Penicillin. IX. The laboratory scale production of penicillin in submerged cultures byPenicillium notatum Westling (NRRL 832). Jour. Bact.51: 79–93. 1946.

    CAS  Google Scholar 

  176. ——. Penicillin. X. The effect of phenylacetic acid on penicillin production. Jour. Bact.53: 329–341. 1947.

    CAS  Google Scholar 

  177. -. Method for production of penicillin. U. S. Patent 2,442,141. 1948.

  178. -. Method for the production of penicillin. U. S. Patent 2,443,989. 1948.

  179. -. Method for production of penicillin. U. S. Patent 2,476,107. 1949.

  180. Moyer, W. W. Treatment of cornsteep water. U. S. Patent 2,477,763. 1949.

  181. Muller, D. Studies on the new enzyme glucoseoxidase. I. Biochem. Zeit.199: 136–170. 1928.

    CAS  Google Scholar 

  182. —. A new enzyme, glucoxidase. II. Biochem. Zeit.205: 111–143. 1929.

    CAS  Google Scholar 

  183. Murkherjee, S. L. andSarkhel, B. C. Synthetic liquid penicillin medium with glycerine as sole source of carbon atom. Nature157: 440. 1946.

    Google Scholar 

  184. Myers, R. P. andSpeck, M. L. Method of producing cornsteep nutrient. U. S. Patent 2,448,680. 1948.

  185. Myers, W. G. andHanson, H. J. New strains ofPenicillium notatum induced by bombardment with neutrons. Science101: 357–358 1945.

    PubMed  Google Scholar 

  186. Norton, J. F. Means for testing the potency of a microorganism inhibitor. U. S. Patent 2,476,899. 1949.

  187. Olive, T. R. Chloromycetin by Parke, Davis. Chem. Eng. Oct.: 107–113; 172–175. 1949.

  188. Pangalos, G. C. Penicillin grown from a nutrient medium prepared from chestnuts. Proc. Fourth Int. Cong. Microbiol., pp. 126–127. 1947.

  189. Parker, A. Aseptic technique in industrial scale fermentations. [In press]. 1950.

  190. Partridge, E. P. Acetic acid and cellulose acetate in U. S. Ind. & Eng. Chem.23: 482–487. 1931.

    CAS  Google Scholar 

  191. Pearl, I. A. andAppling, J. W. Penicillin production. Science100: 51. 1944.

    PubMed  CAS  Google Scholar 

  192. Peck, S. M. andHewitt, W. L. The production of an antibiotic substance similar to penicillin by pathogenic fungi (Dermatophytes). U. S. Pub. Health Rep.60: 148–152. 1945.

    Google Scholar 

  193. Perlman, D. Production of penicillin in submerged culture. Ph.D. Thesis. Univ. Wis. 1945. [Abstracted in Summaries of Doctoral Dissertations, Univ. Wis, 1943–1947].

  194. —. Production of penicillin on natural media. Bull. Torrey Bot. Club76: 79–88. 1949.

    CAS  Google Scholar 

  195. -. [Unpublished studies abstracted by Foster, J. W. (88)]. 1945–1946.

  196. Peterson, W. H.,et al. Large-scale laboratory cultivation of mold. Ind. & Eng. Chem.25: 213–215. 1933.

    CAS  Google Scholar 

  197. —. Factors affecting the kinds and quantities of penicillin produced by molds. Harvey Soc. Lect.42: 276–302. 1946–1947.

    Google Scholar 

  198. Petty, M.,et al. The effect of nutrition on the sporulation ofPenicillium chrysogenum in submerged culture. Proc. Soc. Am. Bact.1: 46. 1948.

    Google Scholar 

  199. Philpott, F. J. A penicillin-like substance fromAspergillus giganteus Wehm. Nature152: 282. 1943.

    Google Scholar 

  200. Porter, R. W. Streptomycin engineered into commercial production. Chem. & Met. Eng.53: 94–98; 142–145. 1944.

    Google Scholar 

  201. Pratt, R. The influence of inorganic salts on penicillin production. Jour. Bact.50: 236. 1945.

    Google Scholar 

  202. —. Influence of the proportions of KH2PO4, MgSO4, and NaNO3 in the nutrient solution on the production of penicillin in surface cultures. Am. Jour. Bot.32: 528–535. 1945.

    CAS  Google Scholar 

  203. — andHok, K. A. Influence of the proportions ofKH 2PO4, and NaNO3 in the nutrient solution on the production of penicillin in submerged cultures. Am. Jour. Bot.33: 149–156. 1946.

    CAS  Google Scholar 

  204. — andDufrenoy, J. Science105: 574. 1947.

    Google Scholar 

  205. ——. Physiological comparison of two strains ofPenicillium. Science102: 428–429. 1945.

    PubMed  CAS  Google Scholar 

  206. - and -. Antibiotics. 1949.

  207. Raper, K. B. andCoghill, R. D. “Home made” penicillin. Jour. Am. Med. Assn.123(2): 1135. 1943.

    Google Scholar 

  208. —,et al. Penicillin. II. Natural variation and penicillin production byPenicillium notatum and allied species. Jour. Bact.48: 639–659. 1944.

    CAS  Google Scholar 

  209. — andAlexander, D. F. Penicillin, V. Mycological aspects of penicillin production. Jour. Elisha Mitchell. Sci. Soc.61: 74–113. 1945.

    Google Scholar 

  210. — andFennell, D. I. Production of penicillin-X in submerged cultures. Jour. Bact.52: 761–777. 1946.

    Google Scholar 

  211. —. The development of improved penicillin producing molds. Ann. N. Y. Acad. Sci.48: 41–56. 1946.

    Google Scholar 

  212. —.Penicillin. U. S. Dept. Agr., Yearbook1943-47: 699–710. 1947.

    Google Scholar 

  213. -. Development of high-yielding strains of microorganisms for production of antibiotics.In Antibiotics, ed. by G. W. Irving and H. T. Herrick. 1949.

  214. - andThom, C. Manual of the Penicillia. Chapter V. 1949.

  215. Rake, G. W.,et al. Method for producing antibiotic substance. U. S. Patent 2,443,952. 1948.

  216. Reese, E. T.,et al. Variation and mutation inPenicillium chrysogenum Wis. Q176. Jour. Bact.57: 15–21. 1949.

    Google Scholar 

  217. Reeves, M. D. andSchmidt, W. H. Penicillin, V. A device for placing cylinders on assay plates. Jour. Bact49: 395–400. 1945.

    CAS  Google Scholar 

  218. Reid, R. D. Some properties of a bacterial-inhibiting substance produced by a mold. Jour. Bact.29: 215–221. 1935.

    CAS  Google Scholar 

  219. Richards, A. N. Penicillin. Jour. Am. Med. Assn.122: 235. 1943.

    Google Scholar 

  220. Rivett, R. W.,et al. Laboratory fermentor for aerobic fermentations. Ind. & Eng. Chem.42: 188–190. 1950.

    CAS  Google Scholar 

  221. Roberts, E. C.,et al. Penicillin B, an antibacterial substance fromPenicillium notatum. Jour. Biol. Chem.147: 47–57. 1943.

    CAS  Google Scholar 

  222. Rode, L. J.,et al. Penicillin production by a thermophilic fungus. Jour. Bact.53: 565–566. 1947.

    CAS  Google Scholar 

  223. Saeman, J. F.;et al. Production of wood sugar in Germany and its conversion into yeast and alcohol. Paper Trade Jour.123: 38–46. 1946.

    CAS  Google Scholar 

  224. —. Aerobic fermentor with good foam-control properties. Anal. Chem.19: 913–915. 1947.

    CAS  Google Scholar 

  225. Sansome, E. R. Induction of “gigas” forms inPenicillium notatum by treatment with camphor vapour. Nature157: 843. 1946.

    Google Scholar 

  226. —. Mutations in cultures ofPenicillium. Trans. Brit. Myc. Soc.37: 66. 1947–1948.

    Google Scholar 

  227. —. Spontaneous variation inPenicillium notatum strain 1249. B21. Trans. Brit. Myc. Soc.31: 66–79. 1947.

    Google Scholar 

  228. —. Spontaneous variation in standard and “gigas” forms ofPenicillium notatum strain 1249.B21. Trans. Brit. Myc. Soc.32: 305–314. 1950.

    Google Scholar 

  229. — andBannan, L. Colchicine ineffective in inducing polyploidy inPenicillium notatum. Lancet250: 828–829. 1946.

    Google Scholar 

  230. Savage, G. M. andVander Brook, M. J. The fragmentation of the mycelium ofP. notatum andP. chrysogenum by a high speed blender and the evaluation of the seed. Jour. Bact.52: 385–391. 1946.

    CAS  Google Scholar 

  231. Schmidt, W. H. andMoyer, A. J. Penicillin. I. Methods of assay. Jour. Bact.47: 199–208. 1944.

    CAS  Google Scholar 

  232. —,et al. Effect of dissociation phases ofB. subtilis on penicillin assay. Jour. Bact.49: 411–412. 1945.

    CAS  Google Scholar 

  233. —,et al. An automatic agar dispenser. Nature162: 903. 1948.

    PubMed  CAS  Google Scholar 

  234. Schneider, W. C.,et al. Laboratory continuous penicillin fermentation. Abst. 114th meeting Am. Chem. Soc, p. 16A. 1948.

  235. Sherwood, M. B.,et al. A rapid, quantitative method for the determination of penicillin. Science99: 247–248. 1944.

    PubMed  CAS  Google Scholar 

  236. Silcox, H. E. andLee, S. B. Fermentation. Ind. & Eng. Chem.40: 1602–1608. 1948.

    CAS  Google Scholar 

  237. Singh, K. andJohnson, M. J. Evaluation of precursors for penicillin-G. Jour. Bact.56: 339–355. 1948.

    CAS  Google Scholar 

  238. Smith, L. D. The bacteriostatic agent ofP. chrysogenum. Jour. Franklin Inst.234: 396–404. 1942.

    CAS  Google Scholar 

  239. SrinivasaRao, C. Production of penicillin. Nature154: 83. 1944.

    Google Scholar 

  240. Stahmann, M. A. andStauffer, J. F. Induction of mutants inP. notatum by methyl-bis (β chloroethyl) amine. Science106: 35–36. 1947.

    PubMed  CAS  Google Scholar 

  241. Stanley, A. R. Clarase inactivation of penicillin. Science99: 59. 1944.

    PubMed  CAS  Google Scholar 

  242. Stark, W. H. andPohler, G. M. Sterile air for industrial fermentations. Absts. 116th meeting Am. Chem. Soc, p. 21A. 1949.

  243. Starks, O. B. andKoffler, H. Aerating liquids by agitating on a mechanical shaker. Science109: 495–496. 1949.

    PubMed  Google Scholar 

  244. Stauffer, J. F. andChurchill, B. W. Stimulation of colony formation from spores ofPenicillium chrysogenum. Absts. 46th meeting Bot. Soc. Am. 1949.

  245. Stefaniak, J. J.,et al. Pilot plant equipment for submerged production of penicillin. Ind. & Eng. Chem.38: 666–671. 1946.

    CAS  Google Scholar 

  246. —,et al. Effect of environmental conditions on penicillin fermentations withPenicillium chrysogenum X-1612. Tour. Bact.52: 119–127. 1946.

    CAS  Google Scholar 

  247. Stenerson, H. Behind the markets. Chem. Eng. News.28: 1606. 1950.

    Google Scholar 

  248. Stice, E. andPratt, R. Production of penicillin—X in “submerged” cultures. Science103: 535–537. 1946.

    PubMed  Google Scholar 

  249. Stone, R. W.,et al. Chemical adjuvants affecting penicillin yields on synthetic media. Jour. Bact.51: 598. 1946.

    Google Scholar 

  250. — andFarrell, M. A. Synthetic media for penicillin production. Science104: 445–446. 1946.

    PubMed  Google Scholar 

  251. -,et al. The effect of amino acids and related compounds on penicillin formation. Absts. 116th meeting, Am. Chem. Soc., p. 17A. 1949.

  252. Tanner, F. W.,et al. Vitamin and protein content of residues from the production of penicillin by submerged fermentation. Arch. Biochem.8: 29–36. 1945.

    CAS  Google Scholar 

  253. Taylor, H. G. Growth ofP. notatum on various media and the development of an antibacterial substance. Proc. Soc. Expt. Biol. & Med.52: 229–231. 1943.

    Google Scholar 

  254. Thomas, M. J. andLarson, R. F. Treatment of cornsteep water. U. S. Patent 2,444,176. 1948.

  255. Thorn, J. A. andJohnson, M. J. Direct estimation of penicillin- G in small broth samples. Anal. Chem.20: 614–617. 1948.

    CAS  Google Scholar 

  256. Ulkin, L. M. Studies on the physiology of the penicillin-producing molds. I. The production of penicillin byP. crustosum on glucose containing media. Microbiology15: 211–222. 1946.

    Google Scholar 

  257. Umezawa, H.,et al. Influence of phenylacetic acid, p-nitrophenylacetic acid, p-aminophenylacetic acid, and p-oxyphenylacetic acid on production of penicillin by surface culture. Jap. Med. Jour.1: 76–80. 1948.

    CAS  Google Scholar 

  258. Underkofler, L. A.,et al. Saccharification of starchy grain mashes for the alcoholic fermentation industry; use of mold amylase. Ind. & Eng. Chem.31: 734–738. 1939.

    CAS  Google Scholar 

  259. Ungar, J. Penicillinase fromB. subtilis. Nature154: 236. 1944.

    CAS  Google Scholar 

  260. Vander Brook, M. J. andSavage, G. M. Seed cultures of filamentous organisms. U. S. Patent 2,488,248. 1949.

  261. Vincent, J. G. andVincent, H. W. Filter paper disc modification of the Oxford cup penicillin determination. Proc. Soc. Exp. Biol. & Med.55: 162–164. 1944.

    CAS  Google Scholar 

  262. Waksman, S. A. andBugie, E. Strain specificity and production of antibiotic substances. II.Aspergillus flavus-oryzae group. Proc. Nat. Acad. Sci.29: 282–287. 1943.

    PubMed  CAS  Google Scholar 

  263. — andReilly, H. C. Strain specificity and production of antibiotic substances. III.Penicillium notatum-chrysogenum group. Proc. Nat. Acad. Sci.30: 99–105. 1944.

    PubMed  CAS  Google Scholar 

  264. ——. Agar streak method for assaying antibiotic substances. Ind. & Eng. Chem., Anal. Edit.17: 556–558. 1945.

    CAS  Google Scholar 

  265. Waller, C. J. Production of citric acid at the factory of Joh. A. Benckiser, Ladenburg, near Heidelberg. Brit. Int. Off. Sub-Comm. Final Rept. 220. H. M. Stationery Office. 1946.

  266. Ward, G. E.,et al. Production of fat from glucose by molds. Cultivation ofPenicillium javanicum van Beijma in large-scale laboratory apparatus. Ind. & Eng. Chem.27: 318–322. 1935.

    CAS  Google Scholar 

  267. Wells, P. A.,et al. Translating mold fermentation research to pilotplant operation. Chem. & Met. Eng.44: 188–194. 1937.

    CAS  Google Scholar 

  268. —,et al. Gluconic acid production. Effect of pressure, air flow, and agitation on gluconic acid production by submerged mold growths. Ind. & Eng. Chem.29: 653–657. 1937.

    CAS  Google Scholar 

  269. Welsch, M. Production of penicillinase by actinomycetes. Proc. IV Int. Cong. Microbiol., pp. 144–145. 1947.

  270. Whiffen, A. J. andSavage, G. M. The relation of natural variation inPenicillium notatum to the yield of penicillin in surface culture. Jour. Bact.53: 231–240. 1947.

    CAS  Google Scholar 

  271. White, E. C. Antibacterial filtrates from cultures ofAspergillus flavipes. Proc. Soc. Exp. Biol. & Med.54: 258–259. 1943.

    Google Scholar 

  272. White, A. G. C.,et al. On a synthetic medium for the production of penicillin. Arch. Biochem.8: 303–311. 1945.

    CAS  Google Scholar 

  273. Whitmore, F. C.,et al. Processing penicillin. Ind. & Eng. Chem.38: 942–948. 1946.

    CAS  Google Scholar 

  274. Winsten, W. R. andSpark, A. H. Penicillin types produced byPenicillium chrysogenum Q176. Science106: 192–193. 1947.

    PubMed  Google Scholar 

  275. Wintersteiner, O. andMacPhillamy, H. B. Method of obtaining a crystalline sodium penicillin. U. S. Patent 2,461,949. 1949.

  276. Wise, W. S. Aeration in culture media. Nature165: 249. 1950.

    Google Scholar 

  277. Wolf, F. T. The oxidation of carbohydrates by a surface strain ofPenicillium notatum. Arch. Biochem.13: 83–92. 1947.

    Google Scholar 

  278. —. The oxidation of carbohydrates by a surface strain ofPenicillium notatum. Jour. Bact.54: 280. 1947.

    Google Scholar 

  279. Woodman, H. E. andEvans, R. E. The nutritive value for pigs and ruminants of dried penicillin felt. Jour. Agr. Sci.37: 81–93. 1947.

    CAS  Google Scholar 

  280. Woodruff, H. B. andFoster, J. W. Microbiological aspects of penicillin. VII. Bacterial penicillinase. Jour. Bact.49: 7–17. 1945.

    CAS  Google Scholar 

  281. -. The bacteriological spectra and microbiological synthesis of the natural penicillins. Abs. IV Int. Cong. Microbiol, pp. 10–11. 1947.

References

  1. Bartholomew, W. H.,et al. Oxygen transfer and agitation in submerged fermentations. I. Mass transfer of oxygen in submerged fermentation ofStreptomyces griseus. Ind. & Eng. Chem.42: 1801–1809. 1950.

    CAS  Google Scholar 

  2. —,et al. Oxygen transfer and agitation in submerged fermentations. II. Effect of air flow and agitation rates upon fermentation ofPenicillium chrysogenum andStreptomyces griseus. Ind. & Eng. Chem.42: 1810–1815. 1950.

    Google Scholar 

  3. —,et al. Design and operation of a laboratory fermentor. Ind. & Eng. Chem.42: 1827–1830. 1950.

    CAS  Google Scholar 

  4. Brunel, J. Who discovered penicillin? Rev. Canad. Biol.3: 333–343. 1944.

    CAS  Google Scholar 

  5. Chain, E. [How we isolated penicillin]. France Illustration #129, p. 283–284. 1948. [In French].

    Google Scholar 

  6. Coghill, R. D.,et al. Penicillin salts of amino acid esters of sterols and preparation thereof. U. S. Patent 2,519,112.

  7. Cook, R. P. andBrown, M. B. Synthetic media for penicillin production. Biochem. Jour.40: xlix-l. 1946.

    Google Scholar 

  8. ——. Studies in penicillin formation. Proc. Royal Soc. Edinburgh44: 137–171. 1950.

    Google Scholar 

  9. Goldschmidt, M. andKoffler, H. Effect of surface-active agents on penicillin yields. Ind. & Eng. Chem.42: 1819–1823. 1950.

    CAS  Google Scholar 

  10. Irrgang, K. [On the importance of propagation and sporulation of penicillin-formingPenicillium cultures]. Zeit. Natur.5(b): 150–155. 1950. [In German].

    Google Scholar 

  11. Negroni, P. Studies on the production of penicillin. III. Influence of nitrogen source. Rev. Inst. Bact.12: 374–379. 1944. [In Spanish].

    CAS  Google Scholar 

  12. Sadasivan, V. Biochemical studies onPenicillium chrysogenum Q176. I. Phosphatase activity and the role of zinc in the production of penicillin. Arch. Biochem.28: 100–110. 1950.

    PubMed  CAS  Google Scholar 

  13. Skeen, J. R. Antibiotics. Chem. Eng.57: 265–267. 1950.

    Google Scholar 

  14. Stark, W. H. andPohler, G. M. Sterile air for industrial fermentations. Ind. & Eng. Chem.42: 1789–1792. 1950.

    CAS  Google Scholar 

  15. Stodola, F. H.,et al. Penitrinic acid, a new pigment fromPenicillium notatum. Jour. Biol. Chem.159: 67–70. 1945.

    CAS  Google Scholar 

  16. Thorn, J. A. andJohnson, M. J. Precursors for aliphatic penicillins. Jour. Am. Chem. Soc.72: 2052–2058. 1950.

    CAS  Google Scholar 

  17. Volini, I. F.,et al. Use of penicillin O. Jour. Am. Med. Assn.143: 794–796. 1950.

    CAS  Google Scholar 

  18. Weigner, K. andWeigner, O. The submerged culture method. Zeit. Chemie-Ing.-Technik6: 129–131. 1950. [In German].

    Google Scholar 

  19. Anonymous. Antibacterial substances—penicillin. Chem. Eng. News21: 1430–1434; 1468. 1943.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review was written during December, 1949, and an effort has been made to include most of the literature appearing prior to that date. Several months later the study by Florey et al. (73a) became available and should be consulted for a more extensive treatment of some of the topics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlman, D. Some mycological aspects of penicillin production. Bot. Rev 16, 449–523 (1950). https://doi.org/10.1007/BF02870174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870174

Keywords

Navigation