Skip to main content

Fungi in Pharmaceuticals and Production of Antibiotics

  • Chapter
  • First Online:
Applied Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The pharmaceutical industry develops, manufactures, and markets medicines and drugs, and is an indispensable part of healthcare sectors. Millions of patients with life-threatening diseases are treated each year with medicines made by fungi, a mostly understudied group of immense commercial importance. The discovery of the treasure trove of fungal secondary metabolites like antibiotics, cholesterol-lowering drug, etc. intrigues the determination of the chemical potential of fungal strains and adoption of new strategies to awake the associated biosynthetic genes. Fungal existence in diverse types of habitat provides them the ability of developing various types of survival mechanism, and these properties make them a rich resource for being used in pharmaceutical industries. The relatively easier mechanism of cultivation and extraction of products made the fungi an important and nonexpensive source for the industries for developing medicinal drugs. The unique bioactive ingredients and their derivatives have attracted researchers for the development of new antibiotics effective against common bacterial diseases and various biofilm-associated chronic infections. This chapter would focus predominantly on the analysis of pharmaceutical competence of fungi, cultivation-based and genetic engineering-based methods, and their applicability for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbanat, D., Leighton, M., Maiese, W., Jones, E. B., Pearce, C., & Greenstein, M. (1998). Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. I. Taxonomy and fermentation. The Journal of Antibiotics, 51, 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Abraham, W. R., & Estrela, A. B. (2016). Fungal metabolites for the control of biofilm infections. Agriculture, 6, 37.

    Article  CAS  Google Scholar 

  • Alberts, A. W., Chen, J., Kuron, G., Hunt, V., et al. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethyl glutaryl coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Science United States of America, 77, 3957–3961.

    Article  CAS  Google Scholar 

  • Alexandre, J., Raymond, E., Kaci, M. O., Brain, E. C., et al. (2004). Phase I and pharmacokinetic study of irofulven administered weekly or biweekly in advanced solid tumor patients. Clinical Cancer Research, 10, 3377–3385.

    Article  CAS  PubMed  Google Scholar 

  • Allison, A. C., & Eugui, E. M. (2000). Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 47, 85–118.

    Google Scholar 

  • Amna, T. (2006). Bioreactor studies on the endophytic fungus Entrophospora for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Bai, R., Zhang, C. C., Yin, X., Wei, J., & Gao, J. M. (2015). Striatoids A-F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. Journal of Natural Products, 78, 783–788.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, A. M., Alberti, F., Kilaru, S., Collins, C. M., et al. (2016). Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Scientific Reports, 6, 25202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber, M. S., Giesecke, U., Reichert, A., & Minas, W. (2004). Industrial enzymatic production of cephalosporin-basedbeta-lactams. Advances in Biochemical Engineering/Biotechnology, 88, 179–215.

    Article  CAS  PubMed  Google Scholar 

  • Bashyal, B., Wellensiek, B., Ramakrishnan, R., Faeth, S. H., Ahmad, N., & Gunatilaka, A. A. (2014). Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorganic & Medicinal Chemistry, 22, 6112–6116.

    Article  CAS  Google Scholar 

  • Berdy, J. (1995). Are actinomycetes exhausted as a source of secondary metabolites? Proceedings of 9th International Symposium on the Biology of Actinomycetes, Part 1.

    Google Scholar 

  • Bhadury, P., Mohammad, B. T., & Wright, P. C. (2006). The current status of natural products from marine fungi and their potential as anti-infective agents. Journal of Industrial Microbiology & Biotechnology, 2006(33), 325–337.

    Article  CAS  Google Scholar 

  • Bills, G. F., Platas, G., Fillola, A., Jimenez, M. R., Collado, J., Vicente, F., Martin, J., Gonzalez, A., Bur-Zimmermann, J., Tormo, J. R., et al. (2008). Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. Journal of Applied Microbiology, 104, 1644–1658.

    Article  CAS  PubMed  Google Scholar 

  • Bills, G. F., Martın, J., Collado, J., Platas, G., et al. (2009). Measuring the distribution and diversity of antibiosis and secondary metabolites in the filamentous fungi. SIM News, 59, 133–147.

    Google Scholar 

  • Brown, A. G., Smale, T. C., King, T. J., Hasenkamp, R., & Thompson, R. H. (1976). Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. Journal of the Chemical Society, 11, 1165–1170.

    Google Scholar 

  • Bucknall, R. A., Moores, H., Simms, R., & Hesp, B. (1973). Antiviral effects of aphidicolin, a new antibiotic produced by Cephalosporium aphidicola. Antimicrobial Agents and Chemotherapy, 4, 294–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunyapaiboonsri, T., Yoiprommarat, S., Srisanoh, U., Choowong, W., et al. (2011). Isariotins G-J from cultures of the Lepidoptera pathogenic fungus Isaria tenuipes. Phytochemistry Letters, 4, 283–286.

    Article  CAS  Google Scholar 

  • Chen, M. C., Lai, J. N., Chen, P. C., & Wang, J. D. (2013). Concurrent use of conventional drugs with Chinese herbal products in Taiwan: A population-based study. Journal of Traditional and Complementary Medicine, 3, 256–262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chepkirui, C., Richter, C., Matasyoh, J. C., & Stadler, M. (2016). Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. Phytochemistry, 132, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Chepkirui, C., Cheng, T., Matasyoh, J., Decock, C., & Stadler, M. (2018). An unprecedented spiro [furan-2,1’ indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaceae, Basidiomycota) collected in Kenya. Phytochemistry Letters, 25, 141–146.

    Article  CAS  Google Scholar 

  • Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, A. D. (2006). Drug discovery from natural sources. The AAPS Journal, 8, 239–253.

    Article  Google Scholar 

  • Cooper, M. A., & Shlaes, D. (2011). Fix the antibiotics pipeline. Nature, 472, 32.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, K., Heatley, N. G., Boyd, P. F., Hale, C. W., Kelly, B. K., Miller, G. A., & Smith, N. (1952). Antibiotic production by a species of Cephalosporium. Journal of General Microbiology, 6, 47. https://doi.org/10.1099/00221287-6-1-2-47

    Article  CAS  PubMed  Google Scholar 

  • Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., et al. (2013). Nucleotideresolution DNA double-strand breaks mapping by next-generation sequencing. Nature Methods, 10, 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. MMBR, 74, 417–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho, M. P., Gulotta, G., do Amaral, M. W., Lunsdorf, H., et al. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum sensing and Mur A. Environmental Microbiology, 18, 4254–4264.

    Article  PubMed  CAS  Google Scholar 

  • De Silva, N. I., Lumyong, S., Hyde, K. D., Bulgakov, T., et al. (2016). Mycosphere essays 9: Defining biotrophs and hemibiotrophs. Mycosphere, 7, 545–559.

    Article  Google Scholar 

  • Del-Cid, A., Gil-Duran, C., Vaca, I., Rojas-Aedo, J. F., Garcıa-Rico, R. O., Levican, G., & Chavez, R. (2016). Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One, 11(1), e0147047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denning, D. W. (2002). Echinocandins: A new class of antifungals. The Journal of Antimicrobial Chemotherapy, 49, 889–891.

    Article  CAS  PubMed  Google Scholar 

  • Doshida, J., Hasegawa, H., Onuki, H., Shimidzu, N., & Exophilin, A. (1996). A new antibiotic from a marine microorganism Exophilia pisciphila. The Journal of Antibiotics, 49, 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  • Duetz, W. A., Ruedi, L., Hermann, R., O’Connor, K., Buchs, J., & Witholt, B. (2000). Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Applied and Environmental Microbiology, 66, 2641–2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsanifard, Z., Mir-Mohammadrezaei, F., Safarzadeh, A., & Ghobad-Nejhad, M. (2017). Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. Journal of Herbmed Pharmacology, 6, 160–164.

    CAS  Google Scholar 

  • Elander, R. P. (2003). Industrial production of lactam antibiotics. Applied Microbiology and Biotechnology, 61, 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Endo, A., Kuroda, M., & Tsujita, Y. (1976). ML-236A, ML-236B, and ML- 236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. The Journal of Antibiotics, 29, 1346–1348.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Ramırez, A., Caz, V., Smiderle, F. R., & Martin-Hernandez, R. (2016). Water-soluble compounds from Lentinula edodes influencing the HMG-CoA reductase activity and the expression of genes involved in the cholesterol metabolism. Journal of Agricultural and Food Chemistry, 64, 1910–1920.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M. Y., Lin, K. H., Lu, C. C., Chen, L. R., et al. (2017). The intensity of blue light-emitting diodes influences the antioxidant properties and sugar content of oyster mushrooms (Lentinus sajor-caju). Scientia Horticulturae, 218, 8–13.

    Article  CAS  Google Scholar 

  • Kaneko, M., Watashi, K., Kamisuki, S., Matsunaga, H., et al. (2015). A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate co transporting polypeptide. Journal of Virology, 89, 11945–11953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh, K., Okada, A., Adachi, K., Imagawa, H., Nishizawa, M., Matsuda, S., Shizuri, Y., & Utsumi, R. (2008). Ascochytatin, a novel bioactive spirodioxynaphthalene metabolite produced by the marine-derived fungus, Ascochyta sp. NGB4. The Journal of Antibiotics, 61, 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Kensy, F., Zang, E., Faulhammer, C., Tan, R. K., & Buchs, J. (2009). Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microbial Cell Factories, 8, 31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King, A. M. (2014). Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510, 503–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluepfel, D., Bagli, J., Baker, H., Charest, M.-P., Kudelski, A., Sehgal, S. N., & Vézina, C. (1972). Myriocin, a new antifungal antibiotic from Myriococcum albomyces. The Journal of Antibiotics, 25(2), 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Kück, U., Bloemendal, S., & Teichert, I. (2014). Putting fungi to work: Harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS One, 10, e1003950.

    Google Scholar 

  • Lambert, C., Wendt, L., Hladki, A. I., Stadler, M., & Sir, E. B. (2019). Hypomontagnella (Hypoxylaceae): A new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycological Progress, 18, 187–201.

    Google Scholar 

  • Li, W. L., Zheng, H. C., Bukuru, J., & De Kimpe, N. (2004). Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology, 92, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Liberra, K., Jansen, R., & Lindequist, U. (1998). Corollosporine, a new phtalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie, 53, 578–581.

    CAS  PubMed  Google Scholar 

  • Liu, L., Gao, H., Chen, X., Cai, X., et al. (2010). Brasilamides A-D: Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. European Journal of Organic Chemistry, 17, 3302–3306.

    Article  CAS  Google Scholar 

  • Liu, L., Redden, H., & Alper, H. S. (2013). Frontiers of yeast metabolic engineering: Diversifying beyond ethanol and Saccharomyces. Current Opinion in Biotechnology, 24, 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Li, L., Zhu, T., Ba, M., et al. (2013). Phenylspirodrimanes with anti- HIV activity from the sponge-derived fungus Stachybotrys chartarum MXHX73. Journal of Natural Products, 76(12), 2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Martín, J. (2012). The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the LaeA regulator. Fungal Genetics and Biology, 49, 1004–1013.

    Article  PubMed  CAS  Google Scholar 

  • Masuma, R., Yamaguchi, Y., Noumi, M., Omura, S., & Namikoshi, M. (2001). Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42, 455–459.

    Article  CAS  Google Scholar 

  • Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A., & Butler, P. C. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 48, 2221–2228.

    Article  CAS  PubMed  Google Scholar 

  • Miao, L., Kwong, T. F., & Qian, P. Y. (2006). Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Applied Microbiology and Biotechnology, 72, 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  • Mikolasch, A., Hessel, S., Salazar, M. G., Neumann, H., Manda, K., Gordes, D., Schmidt, E., Thurow, K., Hammer, E., Lindequist, U., et al. (2008). Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chemical & Pharmaceutical Bulletin, 56, 781–786.

    Article  CAS  Google Scholar 

  • Miller, S. J. (2001). Emerging mechanisms for secondary cardioprotective effects of statins. Cardiovascular Research, 52, 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. D., & Savard, M. E. (1989). Antibiotic activity of the marine fungus Leptosphaeria oraemaris. Proceedings of the Nova Scotian Institute of Science, 39, 51–58.

    Google Scholar 

  • Minagawa, K., Kouzuki, S., Yoshimoto, J., Kawamura, Y., et al. (2002). Stachyflin and acetylstachyflin, novel anti-influenza a virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. The Journal of Antibiotics, 55, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461–477.

    Article  CAS  PubMed  Google Scholar 

  • Ng, T. B., Cheung, R. C., Wong, J. H., Bekhit, A. A., & Bekhit Ael, D. (2015). Antibacterial products of marine organisms. Applied Microbiology and Biotechnology, 99, 4145–4173.

    Article  CAS  PubMed  Google Scholar 

  • Pang, X., Zhao, J., Fang, X., & Zhang, T. (2017). Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities. Journal of Natural Products, 80, 2595–2601.

    Article  CAS  PubMed  Google Scholar 

  • Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22, 189–259.

    Article  CAS  PubMed  Google Scholar 

  • Pejin, B. K., Jovanovic, K., Mojovic, M. G., & Savic, A. (2013). New and highly potent antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012. Current Topics in Medicinal Chemistry, 13, 2745–2766.

    Article  CAS  PubMed  Google Scholar 

  • Pelaez, F., Cabello, A., Platas, G., Dıez, M. T., et al. (2000). The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Systematic and Applied Microbiology, 23, 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Phukhamsakda, C., Macabeo, A. P. G., Yuyama, K., Hyde, K. D., & Stadler, M. (2018). Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete fungus, Roussoella sp. Molecules, 23, 2190.

    Article  PubMed Central  CAS  Google Scholar 

  • Pointing, S. B., Pelling, A. L., Smith, G. J. D., Hyde, K. D., & Reddy, C. A. (2001). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research, 109, 115–124.

    Article  CAS  Google Scholar 

  • Posch, A. E., Herwig, C., & Spadiut, O. (2013). Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 31, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Poucheret, P., Fons, F., & Rapior, S. (2006). Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycologie, 27, 311–333.

    Google Scholar 

  • Qi, S.-H., Xu, Y., Xiong, H.-R., Qian, P.-Y., & Zhang, S. (2008). Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World Journal of Microbiology and Biotechnology, 25, 399–406.

    Article  CAS  Google Scholar 

  • Quian, P.-Y., Li, Y., Kwong, F. N., Yang, L. H., & Dobretsov, S. V. (2006). Use of marine fungus originated compounds as antifouling agents. U.S. Patent US2006/0147410 A1.

    Google Scholar 

  • Riley, G. L., Tucker, K. G., Paul, G. C., & Thomas, C. R. (2000). Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnology and Bioengineering, 68, 160–172.

    Article  CAS  PubMed  Google Scholar 

  • Rowley, D. C., Kelly, S., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorganic & Medicinal Chemistry, 11, 4263–4274.

    Article  CAS  Google Scholar 

  • Sacramento, C. Q., Marttorelli, A., Fintelman-Rodrigues, N., de Freitas, C. S., et al. (2015). Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One, 10, e0139236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samorski, M., Müller-Newen, G., & Buchs, J. (2005). Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnology and Bioengineering, 92, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Sandargo, B., Thongbai, B., Padutya, D., Steinmann, E., et al. (2018). Antiviral 4-hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of nematophagous basidiomycete Hohenbuehelia grisea. Molecules, 23, 2697.

    Article  PubMed Central  CAS  Google Scholar 

  • Sandargo, B., Michehl, M., Praditya, D., Steinmann, E., Stadler, M., & Surup, F. (2019). Antiviral meroterpenoid rhodatin and sesquiterpenoids rhodocoranes A-E from the wrinkled peach mushroom, Rhodotus palmatus. Organic Letters, 21, 3286–3289.

    Article  CAS  PubMed  Google Scholar 

  • Saravolatz, L. D., Deresinski, S. C., & Stevens, D. A. (2003). Caspofungin. Clinical Infectious Diseases, 36(11), 1445–1457. https://doi.org/10.1086/375080

    Article  Google Scholar 

  • Shang, S. (2011). Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrobial Agents and Chemotherapy, 55, 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Silber, J., Ohlendorf, B., Labes, A., Erhard, A., & Imhoff, J. F. (2013). Calcarides A–E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Marine Drugs, 11, 3309–3323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, S. B., Ondeyka, J. G., Tsipouras, N., Ruby, C., et al. (2004). Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease. Biochemical and Biophysical Research Communications, 324, 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Stähelin, H. F. (1996). The history of cyclosporin A (Sandimmune®) revisited: Another point of view. Experientia, 52(1), 5–13. https://doi.org/10.1007/bf01922409

    Article  PubMed  Google Scholar 

  • Surup, F., Kuhnert, E., Lehmann, E., Heitkamper, S., et al. (2014). Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycology, 5, 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Tamminen, A., Wang, Y., & Wiebe, M. G. (2015). Production of calcaride A by Calcarisporium sp. in shaken flasks and stirred bioreactors. Marine Drugs, 13, 3992–4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, S., Yang, B., Liu, J., Xun, T., et al. (2017). Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Natural Product Research, 19, 1–5.

    Google Scholar 

  • Tang, H., Huang, W., Ma, J., & Liu, L. (2018). SWOT analysis and revelation in traditional Chinese medicine internationalization. Chinese Medicine, 13, 1–9.

    Article  Google Scholar 

  • Thongbai, B., Rapior, S., Hyde, K. D., Wittstein, K., & Stadler, M. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress, 14, 1–23.

    Google Scholar 

  • Tian, Y., Lin, X., Wang, Z., Zhou, X., et al. (2016). Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules, 21, 34/1–34/10.

    CAS  Google Scholar 

  • Vance, D. (1972). Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochemical and Biophysical Research Communications, 48, 649–656.

    Article  CAS  PubMed  Google Scholar 

  • Wallwey, C., & Li, S.-M. (2011). Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Natural Product Reports, 28(3), 496–510. https://doi.org/10.1039/c0np00060d

    Article  CAS  PubMed  Google Scholar 

  • Walser, J., & Heinstein, P. F. (1973). Mode of action of illudin S. Antimicrobial Agents and Chemotherapy, 3, 357–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G. Y., Laidlaw, R. D., Marshall, J., & Keasling, J. D. (2003). Metabolic engineering of fungal secondary metabolic pathways. In Z. Q. An (Ed.), Handbook of industrial mycology (p. 10016). Marcel Dekker.

    Google Scholar 

  • Wang, J., Wei, X., Qin, X., Tian, X., et al. (2016). Antiviral merosesquiterpenoids produced by the antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. Journal of Natural Products, 79, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Wu, B., Wiese, J., Labes, A., Kramer, A., Schmaljohann, R., & Imhoff, J. F. (2015). Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Marine Drugs, 13, 4617–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, H., Qi, S., Xu, Y., Miao, L., & Qian, P. Y. (2009). Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. Journal of Hydro-environment Research, 2, 264–270.

    Article  Google Scholar 

  • Xiong, Z. Q., Wang, J. F., Hao, Y. Y., & Wang, Y. (2013). Recent advances in the discovery and development of marine microbial natural products. Marine Drugs, 11, 700–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Yin, Y., Zhang, F., Li, Z., & Wang, L. (2012). Operating conditions optimization for (+)-terrein production in a stirred bioreactor by Aspergillus terreus strain PF-26 from marine sponge Phakellia fusca. Bioprocess and Biosystems Engineering, 35, 1651–1655.

    Article  CAS  PubMed  Google Scholar 

  • Yue, Q., Chen, L., Zhang, X., Li, K., et al. (2015). Evolution of chemical diversity in the echinocandin lipopeptide antifungal metabolites. Eukaryotic Cell, 14(7), 76.

    Google Scholar 

  • Zhou, H., Li, L., Wang, W., Che, Q., et al. (2015). Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. Journal of Natural Products, 78, 1442–1445.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, B., Lahiri, D., Nag, M., Ghosh, S., Dey, A., Ray, R.R. (2022). Fungi in Pharmaceuticals and Production of Antibiotics. In: Shukla, A.C. (eds) Applied Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-90649-8_11

Download citation

Publish with us

Policies and ethics