Skip to main content
Log in

Marine invertebrate collagens: The prevalence of type V and XI like collagens in some marine crustacean and molluscan tissues

  • Trends In Collagen
  • Published:
Proceedings of the Indian Academy of Sciences - Chemical Sciences Aims and scope Submit manuscript

Abstract

While the invertebrates constitute almost 95% of the animal kingdom, our knowledge on their extracellular matrices, particularly on collagen, is very scanty. Our group has been studying the collagen polymorphism in some marine invertebrate tissues with focus on structure-function relationships and molecular evolution. We have established methods to purify unique collagen molecules from some rare tissues of crustaceans and molluscs. Some of these include the intramuscular tissues of the crustaceans and the cartilage and cornea of molluscs. The biochemical parameters in these tissues relating to collagen content, solubility and carbohydrate composition have been determined. The chain composition of these collagens were deduced by SDS-PAGE. We have analyzed the amino acid compositions of these collagens and that of isolated single alpha chains. The physicochemical properties and ultrastructural characteristics of some of these collagens were also studied. The results indicate that the principal component of crustacean muscle is a type V like homotrimer and that of molluscan cartilage and cornea is a unique heteromeric collagen resembling vertebrate type V and XI collagens. These collagens were invariably highly crosslinked, stabilized largely by bound carbohydrates and had significantly high denaturation temperatures. While the crustacean type V collagen formed regularly banded fibrils, the V/XI like collagen of molluscan cartilage lacked periodicity in fibril structure. We correlate the significance of our key observations to the possible functional consequence as well as evolutionary significance, based on the available data on other similar collagens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Rest M and Garrone R 1991FASEB J. 5 2814

    Google Scholar 

  2. Bateman J F, Lamande S R and Ramshaw J A M 1996 InExtracellular matrix vol. 2, Molecular components and interactions (ed.) W D Comper (New York: Harwood) pp. 22–67

    Google Scholar 

  3. Adams E 1978Science 202 591

    Article  CAS  Google Scholar 

  4. Francois J 1985 InBiology of invertebrate and lower vertebrate collagens (eds) A Bairati and R Garrone (NATO-ASI series) (New York: Plenum) pp. 345–368

    Google Scholar 

  5. Sato K, Yoshinaka R, Itoh Y and Sato M 1989Comp. Biochem. Physiol. B92 87

    Google Scholar 

  6. Sato K, Yoshinaka R, Sato M, Itoh Y and Shimizu Y 1988Comp. Biochem. Physiol. B90 155

    Google Scholar 

  7. Sato K, Yoshinaka R, Sato M and Shimizu Y 1987Nippon Suisan Gakkaishi 53 1431

    CAS  Google Scholar 

  8. Yohinaka R, Mizuta S, Itoh Y and Sato M 1990Comp. Biochem. Physiol. B96 451

    Google Scholar 

  9. Sato K, Yoshinaka R, Sato M and Shimizu Y 1986Bull. Jpn. Soc. Sci. Fish. 52 1595

    CAS  Google Scholar 

  10. Sato K, Ohashi C, Ohtsuki K and Kawabata M 1991J. Agric. Food. Chem. 39 1222

    Article  CAS  Google Scholar 

  11. Person P and Philpott D E 1967Clin. Orthopaed. Rel. Res. 53 185

    Article  CAS  Google Scholar 

  12. Schulze C A S 1818Meckel’s Dtsch. Arkin. 4 334

    Google Scholar 

  13. Gegenbaur C 1858Abt. Naturforsch. Ges. Halle. 4

  14. Nowikoff W 1912Z. Wiss. Zool. 103 661

    Google Scholar 

  15. Bairati A 1985 InBiology of invertebrate and lower vertebrate collagens (eds) A Bairati and R Garrone (NATO-ASI series) (New York: Plenum) pp. 277–297

    Google Scholar 

  16. Chandrasekaran F, Chandrakasan G and Krishnan G 1992Leather Sci. 29 19

    Google Scholar 

  17. Sivakumar P, Suguna L and Chandrakasan G 1997J. Biosci. 22 131

    Article  CAS  Google Scholar 

  18. Sivakumar P and Chandrakasan G 1998Biochim. Biophys. Acta. 1381 161

    CAS  Google Scholar 

  19. Woessner J F Jr 1961Arch. Biochem. Biophys. 93 440

    Article  CAS  Google Scholar 

  20. Dubois M, Gilles K A, Hamilton J K, Rebers P A and Smith F 1956Anal. Chem. 28 350

    Article  CAS  Google Scholar 

  21. Laemmli U K 1970Nature (London) 227 680

    Article  CAS  Google Scholar 

  22. Yoshinaka R, Sato K, Itoh Y, Nakajima S and Sato M 1989Comp. Biochem. Physiol. B94 219

    Google Scholar 

  23. Sato K, Yoshinaka R, Sato M and Tomita J 1989J. Food. Sci. 53 1511

    Article  Google Scholar 

  24. Minamisako K and Kimura S 1989Comp. Biochem. Physiol. B94 349

    Google Scholar 

  25. Fessler L I, Kumamoto C A, Meis M E and Fessler J H 1981J. Biol. Chem. 256 9640

    CAS  Google Scholar 

  26. Broek D L, Madri J, Eikenberry E F and Brodsky B 1995J. Biol. Chem. 260 555

    Google Scholar 

  27. Moradi-Ameli M, Rousseau J C, Kleman J P, Champliaud M F, Boutillon M M, Bernillon J, Wallach J and van der Rest M 1994Eur. J. Biochem. 221 987

    Article  CAS  Google Scholar 

  28. Rigby B J 1967Biochim. Biophys. Acta 133 272

    CAS  Google Scholar 

  29. van der Rest M, Foucher E A, Dublet B, Eichenberger D, Font B and Goldschmidt D 1991Biochem. Soc. Trans. 19 820

    Google Scholar 

  30. Birk D E, Fitch J M, Babiarz J P and Linsenmayer T F 1988J. Cell. Biol. 106 999

    Article  CAS  Google Scholar 

  31. Miller E J 1976Mol. Cell. Biochem. 13 165

    Article  CAS  Google Scholar 

  32. Bruckner P, Mayne R and Tuderman L 1983Eur. J. Biochem. 136 333

    Article  CAS  Google Scholar 

  33. Ayad S, Abedin M Z, Grundy S M and Weiss J B 1981FEBS Lett. 123 195

    Article  CAS  Google Scholar 

  34. Reese C A and Mayne R 1981Biochemistry 21 826

    Article  Google Scholar 

  35. Rhodes R K and Miller E J 1978Biochemistry 17 3442

    Article  CAS  Google Scholar 

  36. Burgeson R E, Hebda P A, Morris N P and Hollister D W 1982J. Biol. Chem. 257 7852

    CAS  Google Scholar 

  37. Burgeson R E and Hollister D W 1979Biochem. Biophys. Res. Commun. 87 1124

    Article  CAS  Google Scholar 

  38. Kimura S, Takema Y and Kubota M 1981J. Biol. Chem. 256 13230

    CAS  Google Scholar 

  39. Furuto D K and Miller E J 1983Arch. Biochem. Biophys. 226 604

    Article  CAS  Google Scholar 

  40. Welsh C, Gay S, Rhodes R K, Pfister R and Miller E J 1980Biochim. Biophys. Acta 625 78

    CAS  Google Scholar 

  41. Tseng S C G, Smuckler D and Stern R 1982J. Biol. Chem. 257 2627

    CAS  Google Scholar 

  42. Mayne R, Brewton R G, Mayne P M and Baker J P 1993J. Biol. Chem. 268 9381

    CAS  Google Scholar 

  43. Visconti C S, Kavalkovich K, Wu J J and Niyibizi C 1996Arch. Biochem. Biophys. 328 135

    Article  CAS  Google Scholar 

  44. Bairati A, Cheli F, Oggioni A and Vitellaro Zuccarello L 1989J. Ultrastruct. Mol. Struct. Res. 102 132

    Article  CAS  Google Scholar 

  45. Rigo C and Bairati A 1998Tissue Cell. 30 112

    Article  CAS  Google Scholar 

  46. Bonucci E 1984 InDentin and dentinogenesis (ed.) A Linde (Boca Raton, FL: CRC Press), vol. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowri Chandrakasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, P., Chandrakasan, G. Marine invertebrate collagens: The prevalence of type V and XI like collagens in some marine crustacean and molluscan tissues. Proc. Indian Acad. Sci. (Chem. Sci.) 111, 87–104 (1999). https://doi.org/10.1007/BF02869899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869899

Keywords

Navigation