Skip to main content
Log in

Oxygen isotope studies of epithermal systems: A review

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Numerous stable isotope studies of whole rocks and mineral separates in epithermal systems indicate that even though meteoric waters are dominant components in epithermal systems, fluids of other origins, such as sedimentary or meta-sedimentary fluids, magmatic waters and even evolved meteoric waters, may also play a role in the formation of epithermal ore deposits. Usually the more depleted the wall rocks, the larger the size of ore deposits, and the least depletion degrees in whole rocks for economic mineralization are by about 3.5‰. The depletion inδ 18O in wall rocks, however, may be complicated by the superimposition of low temperature-hydration over high-temperature alteration or vice versa, the existence of primary low-18O and high-18O magmas, and alteration by volcanic gases. The depletion inδ 18O in wall rocks is controlled by the composition and nature of fluids, the temperature of fluids, fractures, the elevation of rocks at the time of alteration, lithology, boiling effects of fluids, and alteration style, as well as by water/rock ratios. In addition, the fluids responsible for epithermal deposits have experienced positiveδ 18O shifts. It seems that when the above complications and controlling factors are well defined, oxygen isotope studies would be a promising and powerful exploration tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnorsson, S. and G. Ivarsson, 1985, Molybdenum in Icelandic geothermal waters: Contrib. Mineral. Petrol., v. 90, p. 179–189.

    Article  Google Scholar 

  • Auwera, J. V. and L. Andre, 1991, Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources: evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy): Contrib. Mineral. Petrol., v. 106, p.325–339.

    Article  Google Scholar 

  • Bennett, E. H., 1980, Granitic rocks of Tertiary age in the Idaho Batholith and their reaction to mineralization: Econ. Geol., v. 75, p.278–288.

    Google Scholar 

  • Bethke and Rye, 1979, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part IV: Source of fluids from oxygen, hydrogen, and carbon isotope studies: Econ. Geol., v. 74, p. 1832–1851.

    Google Scholar 

  • Bickle, M. J. and H. J. Chapman, 1990, Strontium and oxygen isotope decoupling in the Hercynia Trois Seigneics Massif, Pyrenees: Evidence for fluid circulation in a brittle regime: Contrib. Mineral. Petrol., v. 104, p. 332–347.

    Article  Google Scholar 

  • Balttner, P., 1985, Isotope shift data and the natural evolution of geothermal systems. In: Y. Kitano (Gust-Editor), Water rock interaction: Chem. Geol., v. 49, p. 187–203.

    Article  Google Scholar 

  • Blattner, P., V. Dietrich, and A. Gansser, 1983, Contrasting18O enrichment and origins of High Himalayan and Transhimalayan intrusives: Earth Planet. Sci. Lett., v. 65, p. 276–286.

    Article  Google Scholar 

  • Blattner, P. and F. Reid, 1982, The origin of lavas and ignimbrites of the Taupo Volcanic Zone, New Zealand, in the light of oxygen isotope data: Geochim. Cosmochim Acta, v. 46, p. 1417–1429.

    Article  Google Scholar 

  • Cartwright, I. and J. W. Valley, 1991, Low-18O Scourie dike magmas from the Lewisian complex, northwestern Scotland: Geology, v. 19, p. 578–581.

    Article  Google Scholar 

  • Casadevall, T. and H. Ohmoto, 1977, Sunnyside mine, Eureka mining district, San Juan County, Colorado-Geochemistry of gold and base-metal ore deposition in a volcanic environment: Econ. Geol., v. 72, p. 1285–1320.

    Google Scholar 

  • Clayton, R. N. and A. Steiner, 1975, Oxygen isotope studies of the geothermal system at Wairakei, New Zealand: Geochim. Cosmochim. Acta, v. 39, p. 1179–1186.

    Article  Google Scholar 

  • Criss, R. E. and R. J. Fleck, 1987, Petrogenesis, geochronology, and hydrothermal systems of the northern Idaho batholith and adjacent areas based on18O/16O, D/H,87Sr/86Sr, K-Ar, and40Ar/39Ar studies: U. S. Geol. Sur. Prof. Pap., v. 1436, p. 95–137.

    Google Scholar 

  • Criss, R. E. and H. P. Taylor Jr., 1983, An18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith: Geol. Soc. Amer. Bull., v. 94, p. 640–663.

    Article  Google Scholar 

  • Criss, R. E. and H. P. Taylor Jr., 1986, Meteoric-hydrothermal system. In Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R., ed., Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy: Mineral. Soc. Am., v. 16, p. 373–424.

    Google Scholar 

  • Criss, R. E., D. E. Champion, and D. H. McIntyre, 1985, Oxygen isotope, aeromagnetic, and gravity anomalies associated with hydrothermally altered zones in the Yankee Fork mining district, Custer County, Idaho: Econ. Geol., v. 80, p. 1277–1296.

    Google Scholar 

  • Crowley, J. C. and B. J. Giletti, 1983, Patterns of oxygen isotope depletion, multiple hydrothermal circulation systems, and the cooling history of the Stony Mountain intrusive complex, Colorado: Earth Planet. Sci. Lett., v. 64, p. 231–243.

    Article  Google Scholar 

  • Ewers, G. R., 1991, Oxygen isotopes and the recognization of siliceous sinters in epithermal ore deposits: Econ. Geol., v. 86, p. 173–178.

    Google Scholar 

  • Farver, J. R. and B. J. Giletti, 1989, Patterns and processes of oxygen isotope exchange in fossil meteoric hydrothermal system, Cuillins Gabbro Complex, Isle of Skye, Scotland: Contrib. Mineral. Petrol., v. 102, p. 24–33.

    Article  Google Scholar 

  • Field, C. W. and R. H. Fifarek, 1985, Light stable-isotope systematics in the epithermal environment: Rev. Econ. Geol., v. 2, p. 99–128.

    Google Scholar 

  • Foley, N. K., P. M. Bethke, and R. O. Rye, 1989, A reinterpretation of theδDH2O of inclusion fluids in contemporaneous quartz and sphalerite, Creede Mining District, Colorado: A genetic problem for shallow orebodies: Econ. Geol., v. 84, p. 1966–1977.

    Article  Google Scholar 

  • Forester, R. W. and H. P. Taylor Jr., 1972, Oxygen and hydrogen isotope data on the interaction of meteoric ground waters with a gabbro-diorite stock, San Juan Mountains, Colorado, U. S. A.: 24th International Geological Congress, Section 10, p. 254–263.

    Google Scholar 

  • Forester, R. W. and H. P. Taylor Jr., 1977,18O/16O, D/H,13C/12C studies of the Tertiary igneous complex of Skye, Scotland: Am. Jour. Sci., v. 277, p. 136–177.

    Google Scholar 

  • Forester, R. W. and H. P. Taylor Jr., 1980, Oxygen, hydrogen, and carbon isotope studies of the Stony Mountain Complex, western San Juan Mountains, Colorado: Econ. Geol., v. 75, p.362–383.

    Google Scholar 

  • Golding, S. D. and A. F. Wilson, 1983, Geochemical and stable isotope studies of the No.4 Lode, Kalgoorlie, Western Australia: Econ. Geol., v. 78, p. 438–450.

    Google Scholar 

  • Golding, S. D. and A. F. Wilson, 1985, Stable isotope relationship in epithermal gold deposits, Queensland. The Aus. I. M. M. Perth and Kaloorilie Branches Regional Conference: Gold-mining, Metallurgy and Geology, October, 1984, p. 427–436.

  • Hagstrum, J. T. and C. M. Johnson, 1986, A paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: implications for C. R. M. related to hydrothermal alteration: Earth Planet. Sci. Lett., v.78, p.296–314.

    Article  Google Scholar 

  • Harmon, R. S., J. Hoefs, and K. H. Wedepohl, 1987, Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the northern Hessian Depression, W-Germany: Contrib. Mineral. Petrol., v. 95, p. 350–369.

    Article  Google Scholar 

  • Harris, C., H. S. Smith, S. C. Miller, A. J. Erlank, A. R. Ducan, J. S. Marsh, and N. P. Ikin, 1989, Oxygen isotope geochemistry of the Mesozoic volcanics of the Etendeka Formation, Namibia: Contrib. Mineral. Petrol., v. 102, p. 454–461.

    Article  Google Scholar 

  • Harris, C., A. W. Whittinghaam, S. C. Milner, and R. A. Armstrong, 1990, Oxygen isotope geochemistry of the silicic volcanic rocks of the Etendeka-Parana Province: Source constraints: Geology, v. 18, p. 1119–1121.

    Article  Google Scholar 

  • Holland, P. T., D. W. Beaty, and G. G. Snow, 1988, Comparative elemental and oxygen isotope geochemistry of jasperoid in the northern Great Basin: Evidence for distinctive fluid evolution in gold-producing hydrothermal systems: Econ. Geol., v. 83, p. 1401–1423.

    Google Scholar 

  • Johnson, C. M., P. W. Lipman, and G. K. Czamanske, 1990, H, O, Sr, Nd and Pb isotope geochemistry of the Latir volcanic field and cogenic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere: Contrib. Mineral. Petrol., v. 104, p. 99–124.

    Article  Google Scholar 

  • Kusakabe, M., J. Ossaka, M. Yoshida, T. Uchida, and Y. Matsuchisa, 1978, Oxygen isotope composition of rocks altered by volcanic gases from Satsuma Iwo-jima, Japan. In Robonson, B. W., ed., Stable Isotopes in the Earth Science, Science Information Division, DSIR: Wellington, p. 127–138.

    Google Scholar 

  • Larson, P. B. and H. P. Taylor Jr., 1986a,18O/16O ratios in ash-flow tuff and lavas from the central Nevada complex and the central San Juan caldera complex, Colorado: Contrib. Mineral. Petrol., v. 92, p. 146–156.

    Article  Google Scholar 

  • Larson, P. B. and H. P. Taylor Jr., 1986b, An oxygen-isotope study of hydrothermal alteration in the Lake City Caldera, San Juan Mountains, Colorado: Journal of Volcanology and Geothermal Research, v. 30, p. 47–82.

    Article  Google Scholar 

  • Larson, P. B. and H. P. Taylor Jr., 1986c, An oxygen-isotope study of water-rock interaction in the granite of Cataract Gulch, Western San Juan Mountains, Colorado: Geol. Soc. America Bull., v. 97, p. 505–515.

    Article  Google Scholar 

  • Larson, P. B. and H. P. Taylor Jr., 1987, Solfataric alteration in the San Juan Mountain, Colorado: Oxygen isotope variation in boiling environment: Econ. Geol., v. 82, p. 1019–1036.

    Google Scholar 

  • Lea, D. W., P. B. Larson, H. P. Taylor, and M. L. Crawford, 1989, Oxygen isotope and fluid inclusions study of the mineral point area, Eureka Graben, Colorado: Econ. Geol., v. 84, p. 1656–1662.

    Google Scholar 

  • Longstaffe, F. J., A. H. Clark, R. H. McNutt, and M. Zentilli, 1983, Oxygen isotopic compositions of Central Andean plutonic and volcanic rocks, latitudes 260 – 290 south: Earth Planet. Sci. Lett., v. 64, p. 9–18.

    Article  Google Scholar 

  • Magaritz, M. and Taylor, 1976, Isotope evidence for meteoric-hydrothermal alteration of plutonic igneous rocks in the Yokutat Bay and Skagway areas, Alaska: Earth Planet. Sci. Lett., v. 30, p.179–190.

    Article  Google Scholar 

  • Magaritz, M., D. J. Whitford, and D. E. James, 1978, Oxygen isotopes and the origin of high87Sr/86Sr andesites: Earth Planet. Sci. Lett., v.40, p. 220–230.

    Article  Google Scholar 

  • Masi, U., J. R. O’Neil, and R. W. Kistler, 1981, Stable isotope systematics in Mesozoic granites of central and northern California and southwestern Oregon: Contrib. Mineral. Petrol. v. 76, p. 116–126.

    Article  Google Scholar 

  • Matsuhisa, Y., 1979, Oxygen isotopic compositions of volcanic rocks from the East Japan island arcs and their bearing on petrogenesis: J. Volcanol. Geotherm. Res., v. 5, p. 271–296.

    Article  Google Scholar 

  • McCaig, A. M., S. M. Wichham, and H. P. Taylor Jr., 1990, Deep fluid circulation in alpine shear zones, Pyrenees, France: field and oxygen isotope studies: Contrib. Mineral. Petrol., v. 106, p. 41–60.

    Article  Google Scholar 

  • McMurtry, G. M., Fan, P.-F., and T. B. Coplen, 1977, Chemical and isotopic investigations of groundwater in potential areas in Hawaii: Am. J. Sci., v. 277, p. 438–458.

    Google Scholar 

  • Minister of Mines and Petroleum Resources, British Columbia, 1975, Annual report, Chapter 3, Mineral resources statistics: p. A51 – A97.

  • Minister of Mines and Petroleum Resources, British Columbia, 1976, Annual report, Chapter 3, Mineral resources statistics: p. A61 – A106.

  • Muehlenbachs, K., 1986, Alteration of the oceanic crust and the18O history of seawater. In Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R., ed. Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy: Mineral. Soc. Am., v. 16, p. 425–444.

    Google Scholar 

  • Muehlenbachs, K., 1987, Oxygen isotope exchange during weathering and low temperature alteration. In Kyser, T. K., ed., Short Course in Stable Geochemistry of Low Temperature Fluids, Mineralogical Association of Canada: v. 13, p. 337 – 445.

  • Muehlenbachs, K., A. T. Anderson, and G. E. Sigvaldason, 1974, Low-18O basalts from Iceland: Geochim. Cosmochim. Acta, v. 38, p. 577–588.

    Article  Google Scholar 

  • Nesbitt, B. E., 1990, Fluid flow and chemical evolution in the genesis of hydrothermal ore deposits. Mineralogical Association Canada Short Course Handbook: v. 18, p. 261–292.

    Google Scholar 

  • Ohmoto, H. and R. O. Rye, 1970, The Bluebell Mine, British Columbia. I. Mineralogy, paragenesis, fluid inclusions and the isotopes of hydrogen, carbon and oxygen: Econ. Geol., v. 65, p. 417–437.

    Google Scholar 

  • O’Neil, J. R. and M. L. Silberman, 1974, Stable isotope relations in epithermal Au-Ag deposits: Econ. Geol., v. 69, p.902–909.

    Google Scholar 

  • O’Neil, J. R., M. L. Silberman, B. P. Fabbi, and C. N. Chesterman, 1973, Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono, County, California: Econ. Geol., v. 68, p. 765–784.

    Google Scholar 

  • Perters, E. K., 1991, Gold-bearing hot spring systems of the Northern Coast Rangers, California: Econ. Geol., v. 86, p. 1519–1525.

    Google Scholar 

  • Radtke, A. S., R. O. Rye, and F. W. Dickson, 1980, Geology and stable isotope studies of the Carlin gold deposit, Nevada: Econ. Geol., v. 75, p. 641–672.

    Article  Google Scholar 

  • Robinson, B. W. and D. S. Sheppard, 1986, A chemical and isotopic study of the Tokaanu-Waihi geothermal area, New Zealand: Jour. Volcan. Geoth. Res., v. 27, p. 135–151.

    Article  Google Scholar 

  • de Ronde, C. E. J. and P. Blattner, 1988, Hydrothermal alteration, stable isotopes and fluid inclusions of the Golden Cross epithermal gold-silver deposit, Waihi, New Zealand: Econ. Geol., v. 83, p. 895–917.

    Google Scholar 

  • Savin, S. M. and S. Epstein, 1970, The oxygen isotopic compositions of coarse grained sedimentary rocks and minerals: Geochim. Cosmochim. Acta, v. 34, 323–329.

    Article  Google Scholar 

  • Schieber, J. and K. T. Kaatsura, 1986, Sedimentation in epithermal veins of the Bohemia mining district, Oregon, USA: Interpretation and significance: Mineral. Deposita, v. 21, p. 322–328.

    Article  Google Scholar 

  • Sheppard, S. M. F., 1986, Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eurasia and Oceanic Islands. In Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R., ed. Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy: Mineral. Soc. Am., v. 16, p. 319–371.

    Google Scholar 

  • Taylor, B. E., 1987, Stable isotope geochemistry of ore-forming fluids. In Kyser, T. K., ed., Short Course in Stable Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada: v. 13, p. 337 – 445.

  • Taylor, H. P. Jr., 1973,18O/16O evidence for meteoric-hydrothermal alteration and ore deposition in the Tonopah, Comstock Lode, and Goldfield mining districts, Nevada: Econ. Geol., v. 68, p. 747–764.

    Article  Google Scholar 

  • Taylor, H. P. Jr., 1974, The application of oxygen and hydrothermal isotope studies to problems of hydrothermal alteration and ore deposition: Econ. Geol., v. 69, p. 843–883.

    Google Scholar 

  • Taylor, H. P. Jr., 1979, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits: In Barnes, H. L., ed., Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York: p. 235 – 277.

  • Taylor, H. P. Jr., 1986, Igneous rocks: II. Isotopic case studies of circum-Pacific magmatism. In Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R., ed. Stable Isotopes in High Temperature Geological Process, Reviews in Mineralogy: Mineral. Soc. Am., v. 16, p. 273–317

    Google Scholar 

  • Taylor, H. P. Jr. and R. W. Forester, 1971, Low-18O igneous rocks from the intrusive complex of Skye, Mull and Ardnamur Chan, Western Scotland: J. Petrol., v. 12, p. 465–497.

    Google Scholar 

  • Taylor, H. P. Jr. and R. W. Forester, 1979, An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55-m.y.-old fossil hydrothermal system: J. Petrol., v. 20, p. 355–419.

    Google Scholar 

  • Taylor, H. P. Jr. and L. T, Silver, 1978, Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. Short papers of the fourth international conference on geochron., cosmochron., and isotope geol.: U. S. Geol. Survey open file rept.., p. 78–701, 423–426.

  • Taylor, H. P. Jr. and B. Turi, 1976, High-18O igneous rocks from the Tuscan magmatic province, Central Italy: Contrib. Mineral. Petrol., v. 55, p. 33–54.

    Article  Google Scholar 

  • Truesdell, A. H., M. Nuthenson, and R. O. Rye, 1977, The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters: J. Geophys. Res., v. 82, p. 3694–3703.

    Article  Google Scholar 

  • Turi, B. and H. P. Jr. Taylor, 1971, An oxygen and hydrogen isotope study of a granodiorite pluton from the southern California batholith: Geochim. Cosmochim. Acta: v. 35, p. 383–406.

    Article  Google Scholar 

  • Turi, B. and H. P. Jr. Taylor, 1976, Oxygen isotope studies of potassic volcanic rocks of the Roman province, central Italy: Contrib. Mineral. Petrol., v. 55, p. 1–31.

    Article  Google Scholar 

  • Viglino, J. A., R. S. Harmon, J. Bothwick, N. L. Nehring, R. J. Motyyka, L. D. White, and D. A. Johnson, 1985, Stable isotope evidence for a magmatic component in flumarole condensates from Augurisne Volcano, Cook Inlet, Alaska, U. S. A.: Chem. Geol., v. 49, p. 141–157.

    Article  Google Scholar 

  • Vikre, P. G., 1989, Ledge Formation at the Sandstorm and Kendall Gold mines, Goldfield, Nevada: Econ. Geol., v. 84, p. 2115–2138.

    Google Scholar 

  • White, D. E., 1974, Diverse origins of hydrothermal ore fluids: Econ. Geol., v. 69, p. 954–973.

    Article  Google Scholar 

  • Williams, A. E., 1978, Circulation in a fossil geothermal area-δ 18O study. In Zartman, ed., short papers of the fourth international conferences on geochronology, cosmochronology, isotope geolog: U. S. Geological Survey: p. 453–455.

  • Wilson, M. R. and T. K. Kyser, 1988, Geochemistry of porphyry-hosted Au-Ag deposits in the Little Rocky Mountains, Montana: Econ. Geol., v.83, p. 1329–1346.

    Google Scholar 

  • Zhang, L.-G., Liu, J.-X., Zhou, H.-B., and Chen, Z.-S., 1989, Oxygen isotope fractionation in the quartz-water-salt system: Econ. Geol., v. 84, p. 1643–1650.

    Article  Google Scholar 

  • Zhang, X., 1986, Fluid inclusion and stable isotope studies of the gold deposits in Okanagan Valley, British Columbia, unpublished M.Sc., University of Alberta (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Visiting scholar from China University of Geosciences, Beijing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Zhai, Y. Oxygen isotope studies of epithermal systems: A review. Chin. J. of Geochem. 11, 329–343 (1992). https://doi.org/10.1007/BF02869064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869064

Keywords

Navigation