Skip to main content
Log in

Insulin or sulfonylurea treatments of the diabetics differentially affect erythrocyte membrane and serum enzymes and extent of protein glycosylation

  • Diabetes Mellitus
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Erythrocyte membrane protein glycosylation increase by 3.4 fold in diabetes. Insulin or sulfonylurea treatment did not reduce the extent of glycosylation. The serum protein glycosylation was comparable in all the groups including control. Erythrocyte membrane Na+,K+-ATPase activity decreased in the diabetics; only insulin treatment partly restored the activity. Erythrocyte membrane acetylcholinesterase activity decreased only in the sulfonylurea treated group. Serum butyrylcholinesterase activity was relatively low in the diabetic and insulin treated diabetic groups. The Km and Vmax of the two components of Na+,K+-ATPase from erythrocyte membranes were differently affected in the diabetic and the two treatment groups. The Vmax of acetylcholinesterase decreased only in the sulfonylurea treated group. Diabetic states resulted in decreased Vmax of components I and II of serum butyrylcholinesterase. In insulin-treated diabetics, component II was absent. Sulfonylurea group resembled diabetics.In vitro incubation with insulin differentially affected the Na+,K+-ATPase and serum butyrylcholinesterase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, M. P. (1989) Non enzymatic glycation and enhanced polyol pathway activity in the pathogenesis of diabetic nephropathy, In: Diabetes and Kidney. Contrib. Nephrol. Eds. Heidland A., Koch K. M., Heidbereder E, Karger and Basel, vol. 73, 59–72.

  2. Guerci, B., Durain, D., Leblance, H., Rouland, J. C., Godeau, Th., Charbonnel, B., Mathieu Daude, J. C., Boniface, H., Monnier, L., Dauchy F., Slama G. and Drouin, P. (1997) Multicenter evaluation of the DCA 2000 system for measuring evaluation of the glycated hemoglobin. Diabetes & Metabolism 23, 195–201.

    CAS  Google Scholar 

  3. Rapaport, S. I. (1985) Blood and Plasma Proteins: Functions and Composition of Blood, In: Best and Taylor's Physiological Basis of Medical Practice Ed. West J. B. 11th edn. Williams and Wilkins: Baltimore, pp. 334–340.

    Google Scholar 

  4. Kowluru, A., Kowluru, R. A. and Bitensky, M. W. (1978) Nonenzymatic glycosylation of erythrocyte cytoskeletal proteins in diabetes mellitus, In: Frontiers in Diabetes, Eds. Belfiore, F., Molinatti, G. M. and Willianmson, J. R. Karger, Basel: pp. 190–194.

    Google Scholar 

  5. Gamer, M. H., Bahador, A. and Sachs G. (1990) Nonenzymatic glycation of Na+,K+ ATPase. J. Biol. Chem. 265, 15058–15066.

    Google Scholar 

  6. Ver, A., Cserwely P., Banyasz, T., Kovacs, T. and Somogyi, J. (1995) Alterations in the properties and isoform ratios of brain Na+,K+ ATPase in streptozotocin diabetic rats. Biochim. Biophys. Acta 1237, 143–150.

    Article  PubMed  Google Scholar 

  7. Ku, D. D., Roberts, R. B., Sellers, B. M. and Meezan, E. (1987) Regression of renal hypertrophy and elevated renal Na+,K+ ATPase activity after insulin treatment in streptozotocin-diabetic rats. Endocrinol. 120, 2166–2173.

    Article  CAS  Google Scholar 

  8. Agrawal, V. R., Rastogi, A. K., Sahib, M. K. and Sagar, P. (1985) In vitro insulin effect on acetylcholine esterase of erythrocyte membranes of normal and diabetic rats. Acta Diabetol. Lat. 22, 359–363.

    Google Scholar 

  9. Suhail, M. and Rizvi, S. I. (1989) Erythrocyte membrane acetylcholineesterase in type I (insulin-dependent) diabetes mellitus. Biochem. J. 259, 897–899.

    PubMed  CAS  Google Scholar 

  10. Patel, B. N., Mackness, M. I., Harty, D. W., Arros S., Boot-Handford, R. P. and Durrington, (1990) P. N. Serum esterase activities and hyperlipidaemia in the streptozotocin-diabetic rat. Biochim. Biophys. Acta 1035, 113–116.

    PubMed  CAS  Google Scholar 

  11. Oreskovic, K. and Kunec-Vajic, E. (1992) Pseudocholinesterase in alloxan-diabetic rats. Chem. Pathol. Pharmacol. 78, 117–120.

    CAS  Google Scholar 

  12. Baldini, P., Ineerpi, S., Pascale, E., Rinaldi, C., Verna, R. and Luly, P. (1986) Insulin effects on human red blood cells. Mol. Cell. Endocrinol. 46, 93–102.

    Article  PubMed  CAS  Google Scholar 

  13. Zimmerman, B. R. (1997) Sulfonylureas. Current therapies of diabetes. 26, 511–522.

    CAS  Google Scholar 

  14. Romano, G., Patti, L., Innelli, F., Marino, L. D., Annuzzi, G., Lavicoli, M., Coronel, G. A., Riccardi, G. and Rivellese, A. A. (1997) Insulin and sulfonylurea therapy in NIDDM patients: Are the effects on lipoprotein metabolism different even with similar blood glucose control? Diabetes 46, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  15. Kumthekar, M. M. and Katyare, S. S. (1992) Altered kinetic attributes of Na+,K+ ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Ind. J. Exptl. Biol. 30, 26–32.

    CAS  Google Scholar 

  16. Fiske, C. H. and Subba Row, Y. (1925) Colorimetric determination of phosphorous. J. Biol. Chem. 66, 375–400.

    CAS  Google Scholar 

  17. Dixon, M. and Webb, C. (1979) Enzymes Longman, London, p. 47–206.

    Google Scholar 

  18. Dave, K. R., Syal, A. R. and Katyare, S. S. (2000) Tissue cholinesterases. A comparative study of their kinetic properties. Z. Neuroforsch. 55 C, 100–108.

    Google Scholar 

  19. Ellman, G. L., Courtney, K. V., Anders, V. and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholineesterase activity. Biochem. Pharmacol. 7, 88–95.

    Article  PubMed  CAS  Google Scholar 

  20. Godkar, P. (1994) Text Book of Laboratory Technology, Bhalani Publishing House, Bombay, p. 93–117.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  22. Massoulie, J. Pezementi, L., Bon, S., Krejci, E. and Vallette, F-M, (1993) Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41, 31–91.

    Article  PubMed  CAS  Google Scholar 

  23. Robinson, J. D. and Flashner, M. S. (1979) The (Na+−K+)-activated ATPase. Enzymatic and transport propeties. Biochim. Biophys. Acta 549, 145–176.

    PubMed  CAS  Google Scholar 

  24. Ido, Y., Vindigni, A., Chang, K., Stramm, L., Chance, R., Heath W. F., DiMarchi, R. D., DiCera, E. and Williamson, J. R. (1998) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277, 563–566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dave, K.R., Patel, T.H. & Katyare, S.S. Insulin or sulfonylurea treatments of the diabetics differentially affect erythrocyte membrane and serum enzymes and extent of protein glycosylation. Indian J Clin Biochem 16, 81–88 (2001). https://doi.org/10.1007/BF02867573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02867573

Keywords

Navigation