Skip to main content
Log in

Mitochondria in plants. II

  • Interpreting Botanical Review
  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

The significant researches of the past decade on cytoplasmic inclusions have been characterized by new experimental morphological and cyto-chemical techniques which have shed new light upon the role of mitochondria in plant and animal cells. Although some of the experimental approaches were motivated by considerations of non-Mendelian heredity, viruses, enzymology and neoplasms, and the results are sometimes tangential in reference to mitochondria, there appears to be a sufficient correlation between these sometimes oblique approaches and those concerned with mitochondria per se to establish a working theory for the functional significance of mitochondria.

Techniques for the isolation of mitochondria from the cell by maceration and ultra-centrifugation, improved cytochemical and genetic techniques, the application of electron and phase microscopy and other morphological techniques to the problem, have rather clearly indicated the relation of mitochondria to metabolism, morphogenesis and heredity, and have further implicated them with viruses and neoplasms of plant and animal cells. Further work will be necessary to clarify these relationships, but with the techniques now available the way seems clear for more definitive evidence.

The advances—but also the limitations—of the experimental techniques have emphasized the need for further researches on the more orthodox morpho-cytological techniques for the better fixation and staining of cellular inclusions, and they suggest the search for new chemicals for fixation rather than further modifications of extant formulae. This task may have been made easier by the cyto-chemical revelations made thus far of the properties of the protoplasmic constituents.

It can be stated that greater progress has been made in the past decade concerning the functional significance of mitochondria than in the preceding 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Altenburg, E. The “viroid” theory in relation to plasmagenes, viruses, cancer and plastids. Am. Nat.80: 559–567. 1946.

    Article  Google Scholar 

  2. — The role of symbionts and autocatalysts in the genetics of the ciliates. Am. Nat.82: 252–264. 1949.

    Article  Google Scholar 

  3. Anderson, L. E. Cytoplasmic inclusions in the male gametes ofLilium. Am. Jour. Bot.26: 761–766. 1939.

    Article  Google Scholar 

  4. Baker, J. R. Chemical composition of mitochondria. Nature149: 611–612. 1942.

    Article  CAS  Google Scholar 

  5. -. Cytological technique. 1945.

  6. Bald, J. G. The development of amoeboid inclusion bodies of tobacco mosaic virus. Austral. Jour. Sci. Res. B.1: 458–463. 1948.

    Google Scholar 

  7. Barron, E. S. G. The application of biological oxidation-reduction reaction systems to the study of cellular respiration. Biol. Symp.10: 27–70. 1943.

    Google Scholar 

  8. Bauer, L. Untersuchungen zur Entwicklungsgeschichte und Physiologie der Piastiden von Laubmoosen. Flora36: 30–84. 1942.

    Google Scholar 

  9. Beams, H. W. Ultracentrifugal studies on cytoplasmic components and inclusions. Biol. Symp.10: 71–90. 1943.

    CAS  Google Scholar 

  10. Bensley, R. R. On the fat distribution in mitochondria of the guinea pig liver. Anat. Rec.69: 341–353. 1937.

    Article  CAS  Google Scholar 

  11. — Chemical structure of cytoplasm. Biol. Symp.10: 323–334. 1943.

    CAS  Google Scholar 

  12. — On the nature of the pigment of mitochondria and of submicroscopic particles of the hepatic cell of the guinea pig. Anat. Rec.98: 609–619. 1947.

    Article  Google Scholar 

  13. — andHoerr, N. L. Studies on cell structure by the freezing drying method. VI. The preparation and properties of mitochondria. Anat. Rec.66: 449–456. 1934.

    Article  Google Scholar 

  14. Billingham, R. E. andMedewar, P. B. Pigment spread and cell heredity in Guinea pigs’ skin. Heredity2: 29–47. 1948.

    PubMed  CAS  Google Scholar 

  15. Blodgett, E. C. Peach calico. Phytopath.34: 650–657. 1944.

    Google Scholar 

  16. Bourne, G. Cytology and cell physiology. 1942.

  17. Brachet, J. Nucleic acids in the cell and the embryo. Symp. Soc. Exp. Biol.1: 207–224. 1947.

    Google Scholar 

  18. — Biochemical and physiological interrelations between nucleus and cytoplasm during early development. Growth Symp.11: 309–324. 1947.

    CAS  Google Scholar 

  19. — The metabolism of nucleic acids during embryonic development. Cold Spring Harbor Symp. Quant. Biol.12: 18–27. 1947.

    Google Scholar 

  20. — The localization and the role of ribonucleic acid in the cell. Ann. N. Y. Acad. Sci.50: 861–869. 1950.

    Article  CAS  Google Scholar 

  21. — andJeener, R. Recherches sur des particules cytoplasmiques des dimensions macromoléculaires riches en acide pentosenucléique. Enzymologia11: 196–212. 1944.

    CAS  Google Scholar 

  22. Brenner, S. The demonstration by supravital dyes of oxidation-reduction systems on the mitochondria of the intact rat lymphocyte. So. Afr. Med. Sci.14: 13–19. 1949.

    CAS  Google Scholar 

  23. Buchholz, J. T. Methods in the preparation of chromosomes and other parts of cells for examination with an electron microscope. Am. Jour. Bot.34: 445–454. 1947.

    Article  Google Scholar 

  24. Buvat, R. Évolution du chondriome dans les cultures des tissus de Chicorée à café. Compt. Rend. Acad. Sci.222: 970–971. 1946.

    Google Scholar 

  25. — Action de l’eau sur le chondriome des cellules de la racine de Chicorée à café. Compt. Rend. Acad. Sci.222: 1187–1189. 1946.

    Google Scholar 

  26. — Observation vitale, prolongée pendent quatorze jours, de l’action de l’eau sur les chondriosomes d’une même cellule. Compt. Rend. Acad. Sci.224: 359–361. 1947.

    Google Scholar 

  27. — Influence de la cyclose sur les chondriosomes des cellules de Chicorée et de scorsonère immergées dans l’eau. Compt. Rend. Acad. Sci.224: 668–670. 1947.

    Google Scholar 

  28. Cain, A. J. An easily controlled method for staining mitochrondria. Quart. Jour. Micr. Sci.89: 229–231. 1948.

    CAS  Google Scholar 

  29. Caspari, E. Cytoplasmic inheritance. Adv. Genet.2: 3–66. 1948.

    Google Scholar 

  30. Caspersson, T. The relations between nucleic acid and protein synthesis. Symp. Soc. Exp. Biol.1: 127–151. 1947.

    Google Scholar 

  31. Ceruti, A. Clorocondrioma e cromocondrioma isolati in vitro. Lavori Bot. Torino8: 77–94. 1947.

    Google Scholar 

  32. — L’azione di alcuni cationi e dell’acqua sul condrioma isolate in vitro. Atti Accad. Lincei Rend. Cl. Sci. Fis., Mat. e Nat. Ser.845 (6): 452–460. 1948.

    Google Scholar 

  33. Chambers, R. Electrolytic solutions compatible with the maintenance of protoplasmic structures. Biol. Symp.10: 91–109. 1943.

    CAS  Google Scholar 

  34. Christiansen, E. G. Orientation of the mitochondria during mitosis. Nature163: 361. 1949.

    Article  PubMed  CAS  Google Scholar 

  35. Claude, A. Particulate components of normal and tumor cells. Science91: 77–78. 1940.

    Article  PubMed  CAS  Google Scholar 

  36. — Particulate components of cytoplasm. Cold Spring Harbor Symp. Quant. Biol.9: 263–271. 1941.

    CAS  Google Scholar 

  37. — The constitution of protoplasm. Science97: 451–456. 1943.

    Article  PubMed  CAS  Google Scholar 

  38. — Distribution of nucleic acids in the cell and the morphological constitution of cytoplasm. Biol. Symp.10: 111–129. 1943.

    CAS  Google Scholar 

  39. — The constitution of mitochondria and microsomes, and the distribution of nucleic acid in the cytoplasm of a leukemic cell. Jour. Exp. Med.80: 19–29. 1944.

    Article  CAS  Google Scholar 

  40. — Studies on cell morphology and functions: methods and results. Ann. N. Y. Acad. Sci.50: 854–860. 1950.

    Article  Google Scholar 

  41. — andFullam, E. F. An electron microscope study of isolated mitochondria. Jour. Exp. Med.81: 51–62. 1945.

    Article  Google Scholar 

  42. Constantinesco, D. Sur l’évolution du chondriome du sac embryonnaire deDigitalis purpurea L. Compt. Rend. Acad. Sci.216: 206–207. 1943.

    Google Scholar 

  43. Cowdry, E. V. General cytology. 1924.

  44. — Reactions of mitochondria to cellular injury. Arch. Path.1: 237–255. 1926.

    Google Scholar 

  45. -. A textbook of histology. 1934.

  46. Dangeard, P. andEymé, J. Les plastes et les mitochondries dans la cellule apicale de quelques Muscinées. Compt. Rend. Acad. Sci.222: 335–336. 1946.

    Google Scholar 

  47. Danielli, T. F. Establishment of cytochemical techniques. Nature157: 755–757. 1946.

    Article  Google Scholar 

  48. — A study of the techniques for the cytochemical demonstrations of nucleic acids and some components of proteins. Symp. Soc. Exp. Biol.1: 101–113. 1947.

    Google Scholar 

  49. Darlington, C. D. andMather, K. The elements of genetics. 1949.

  50. Das, R. S. The cytoplasmic inclusions in the oogenesis ofRhipicephalus sanguineus (Latreille). Zeit. Zellf. u. Mikr. Anat.30: 36–51. 1940.

    Article  Google Scholar 

  51. Davidson, J. N. The distribution of nucleic acids in tissues. Symp. Soc. Exp. Biol.1: 77–85. 1947.

    Google Scholar 

  52. — Some factors influencing the nucleic acid content of cells and tissues. Cold Spring Harbor Symp. Quant. Biol.12: 50–59. 1947.

    CAS  Google Scholar 

  53. De Robertis, E. D. P.,et al. General cytology. 1948.

  54. Dounce, A. L. Enzyme systems of isolated cell nuclei. Ann. N. Y. Acad. Sci.50: 982–999. 1950.

    Article  CAS  Google Scholar 

  55. Dry, D. S. Improved methods for the demonstration of mitochondria, glycogen, fat and iron in animal cells. So. Afr. Jour. Sci.41: 298–301. 1945.

    Google Scholar 

  56. Du Buy, H. G. andWoods, M. W. Evidence for the evolution of phytopathogenic viruses from mitochondria and their derivatives. II. Chemical evidence. Phytopath.33: 766–777. 1943.

    Google Scholar 

  57. - and -. A possible common mitochondrial origin of the variegational and virus diseases in plants and cancer in animals. Am. Ass. Adv. Sci., Res. Conf. on Cancer 162–169. 1944.

  58. —,et al. Enzymatic activities of isolated amelanotic and melanotic granules of mouse melanomas and a suggested relationship to mitochondria. Jour. Nat. Cancer Inst.9: 325–336. 1949.

    Google Scholar 

  59. —,et al. Enzymatic activities of isolated normal and mutant mitochondria and plastids of higher plants. Science111: 572–574. 1950.

    Article  Google Scholar 

  60. Fauré-Fremiet, E.,et al. Double origine des ribonucleoproteines cytoplasmiques dans l’oocyte deGlomeris marginata. Exp. Cell Res.1: 253–263. 1950.

    Article  Google Scholar 

  61. Gabe, M. andPrenant, M. Contribution à la cytologie de la glande salivaire deLimnea stagnate L. La Cellule52: 17–36. 1948.

    Google Scholar 

  62. Garrigues, R. Action de la colchicine et du chloral sur la racine deVicia faba. Rev. Cytol. et Cytophysiol. Vég.4: 261–301. 1940.

    Google Scholar 

  63. Goerner, A. Effect of dibenzanthracene on vitamin A and total lipid of mitochondria. Jour. Biol. Chem.122: 529–538. 1938.

    CAS  Google Scholar 

  64. Gonçalves da Cunha, A. Ainda sobre a origem dos plastos. Boll. Soc. Broteriana16: 161–164. 1942.

    Google Scholar 

  65. — Sobre o anterozoide dos carófitos. Boll. Soc. Broteriana16: 165–168. 1942.

    Google Scholar 

  66. — Le chondriome végétal et son évolution. Brotéria Ciênc. Nat.13: 49–72. 1944.

    Google Scholar 

  67. Graffi, A. Einige Betrachtungen zur Ätiologie der Geschwülste speziell zur Natur des wirksamen Agens der zellfrei übertragbaren Hühnertumoren. Zeits. Krebsforsch.50: 501–551. 1940.

    Article  Google Scholar 

  68. — Intracellular Benzpyrenspeicherung in lebenden Normal- und Tumorzellen. Zeits. Krebsforsch.50: 196–219. 1940.

    Article  Google Scholar 

  69. Guilliermond, A. La coloration vitale des chondriosomes. Bull. Histol. Appl. Physiol. et Path.17: 225–237. 1940.

    Google Scholar 

  70. — Données actuelles sur la signification physiologique des chondriosomes. Bull. Histol. Appl. Physiol. et Path.18: 91–104. 1941.

    Google Scholar 

  71. -. The cytoplasm of the plant cell. 1941.

  72. Haddow, A. Transformations of cells and viruses. Nature154: 194–199. 1944.

    Article  Google Scholar 

  73. Hall, R. P. Cytoplasmic inclusions of the plant-like Flagellates. II. Bot. Rev.12: 515–520. 1946.

    CAS  Google Scholar 

  74. Harman, J. W. The selective staining of mitochondria. Stain Tech.25: 69–72. 1950.

    CAS  Google Scholar 

  75. — Studies on mitochondria. I. The association of cyclophorase with mitochondria. II. The structure of mitochondria in relation to enzymatic activity. Jour. Exp. Cell Res.1: 382–402. 1950.

    Article  Google Scholar 

  76. Hoerr, N. L. Methods of isolation of morphological constituents of the liver cell. Biol. Symp.10: 185–231. 1943.

    CAS  Google Scholar 

  77. Hogeboom, G. H. Succinic dehydrogenase of mammalian liver. Jour. Biol. Chem.162: 739–740. 1946.

    CAS  Google Scholar 

  78. —,et al. The distribution of cytochrome oxidase and succinoxidase in the cytoplasm of the mammalian liver cell. Jour. Biol. Chem.165: 615–629. 1946.

    CAS  Google Scholar 

  79. —,et al. The isolation of morphologically intact mitochondria from rat liver. Proc. Soc. Exp. Biol. & Med.65: 320–321. 1947.

    Google Scholar 

  80. Hollande, A. Le chondriome des Eugléniens et des Cryptomonadines. Compt. Rend. Acad. Sci.210: 317–319. 1940.

    Google Scholar 

  81. Holter, H. Studies on enzymatic histochemistry. XVIII. Localization of peptidase in marine ova. Jour. Cell. & Comp. Physiol.8: 179–200. 1936.

    Article  CAS  Google Scholar 

  82. — andKopac, M. J. Studies on enzymatic histochemistry. XXIV. Localization of peptidase in the Ameba. Jour. Cell. & Comp. Physiol.10: 423–437. 1937.

    Article  CAS  Google Scholar 

  83. Hultin, T. On the acid formation, breakdown of cytoplasmic inclusions, and increased viscosity inParacentrotus egg homogenates after the addition of calcium. Exp. Cell Res.1: 272–283. 1950.

    Article  Google Scholar 

  84. Hydén, H. The nucleoproteins in virus reproduction. Cold Spring Harbor Symp. Quant. Biol.12: 104–114. 1947.

    Google Scholar 

  85. Imai, Y. The behavior of the plastid as a hereditary unit: The theory of the plastogene. Cytologia, Fujii Jub. Vol.: 934–947. 1937.

  86. Jones, R. The nature and the relative specific gravities of the inclusions in ultracentrifuged cells ofElodea andTriticum. La Cellule47: 61–76. 1938.

    Google Scholar 

  87. Joyet-Lavergne, P. Une nouvelle technique pour les recherches cytologiques et cytophysiologiques, la méthode des indigosols. Compt. Rend. Acad. Sci.222: 1514–1516. 1946.

    Google Scholar 

  88. Lazarow, A. The chemical structure of cytoplasm as investigated in Professor Bensley’s laboratory during the past ten years. Biol. Symp.10: 9–26. 1943.

    CAS  Google Scholar 

  89. Lewitsky, G. Über die Chondriosomen in pflanzlichen Zellen. Ber. Deut. Bot. Ges.28: 538–546. 1910.

    Google Scholar 

  90. — Die Chloroplastenanlagen in lebenden und fixierten Zellen vonElodea canadensis. Ber. Deut. Bot. Ges.29: 697–703. 1911.

    Google Scholar 

  91. L’Heriter, Ph. Sensitivity to CO2 in Drosophila—a review. Heredity2: 325–348. 1948.

    Google Scholar 

  92. Li, C. andRoberts, E. Amino acids in the mitochondrial fractions of tissues as determined by paper partition chromatography. Science110: 559–560. 1949.

    Article  PubMed  CAS  Google Scholar 

  93. Mann, G. Physiological histology. 1902.

  94. Marengo, N. P. A study of the cytoplasmic inclusions during sporogenesis inOnoclea sensibilis. Am. Jour. Bot.36: 603–613. 1949.

    Article  Google Scholar 

  95. Mather, K. Nucleus and cytoplasm in differentiation. Symp. Soc. Exp. Biol.2: 196–216. 1948.

    Google Scholar 

  96. McCurdy, M. B. D. The effect of growth and nutrition on mitochondria in liver cells ofFundulus heroclitus. Biol. Bull.79: 252–254. 1940.

    Article  Google Scholar 

  97. McDonough, E. S. Studies on the cytoplasm and its inclusions inSclerospora graminicola. Am. Jour. Bot.30: 809–813. 1943.

    Article  Google Scholar 

  98. McManus, J. F. A. The demonstration of certain fatty substances in paraffin sections. Jour. Path. & Bact.58: 93–95. 1946.

    Article  Google Scholar 

  99. Meitres, M. Heterogeneité structurale de chondrioconte chezLupinus albus L. Compt. Rend. Acad. Sci.218: 241–243. 1944.

    Google Scholar 

  100. Menke, W. Untersuchungen über das Protoplasma grüner Pflanzenzellen. I. Isolierung von Chloroplasten aus Spinatblättern. Zeits. Physiol. Chem.257: 43–48. 1938.

    CAS  Google Scholar 

  101. Monné, L. Lipoidverteilung, Phasentrennung und Polarität der Zelle. Ark. Zool.34: 1–8. 1942.

    Google Scholar 

  102. — Über die elektive Vitalfärbung des Vakuoms und der Mitochondrien so wie über die diffuse Vitalfärbung des gesamten Zytoplasmas. Arch. Exp. Zellf. Geweb.24: 373–393. 1942.

    Google Scholar 

  103. — Functioning of the cytoplasm. Adv. Enzym.8: 1–69. 1948.

    Google Scholar 

  104. Mühlethaler, K. von,et al. Zur Morphologie der Mitochondrien. Experientia6: 16–20. 1950.

    Article  PubMed  Google Scholar 

  105. Newcomer, E. H. Mitochondria in plants. Bot. Rev.6: 85–147. 1940.

    Article  Google Scholar 

  106. — An osmic impregnation method for mitochondria in plant cells. Stain Tech.15: 89–90. 1940.

    Google Scholar 

  107. — Concerning the duality of the mitochondria and the validity of the osmiophilic platelets in plants. Am. Jour. Bot.33: 684–697. 1946.

    Article  Google Scholar 

  108. Noel, R. andTuchmann-Duplessis, H. Le chondriome et les rapports génétiques des cellules hypophysaires de la souris blanche. Ann. Endocrin.6: 31–46. 1945.

    Google Scholar 

  109. O’Brien, J. A. Cytoplasmic inclusions in the glandular epithelium of the scutellum ofTriticum sativum andSecale cereale. Am. Jour. Bot.29: 479–491. 1942.

    Article  Google Scholar 

  110. Opie, E. L. Cytochondria of normal cells, of tumor cells, and of cells with various injuries. Jour. Exp. Med.86: 45–54. 1947.

    Article  CAS  Google Scholar 

  111. — An osmotic system within the cytoplasm of cells. Jour. Exp. Med.87: 425–444. 1948.

    Article  CAS  Google Scholar 

  112. Pensa, A. Alcuni formazioni endocellulari dei vegetali. Anat. Anz.37: 325–333. 1910.

    Google Scholar 

  113. Petrunkevitch, A. Some curious effects of salts of metals and other chemicals on fixation. Anat. Rec.86: 387–397. 1943.

    Article  CAS  Google Scholar 

  114. Pfeiffer, H. H. Experimentelle cytologie. 1940.

  115. Pollister, A. W. Mitochondrial orientations and molecular patterns. Physiol. Zool.14: 268–280. 1941.

    Google Scholar 

  116. Porter, K. R.,et al. A study of tissue culture cells by electron microscopy. Jour. Exp. Med.81: 233–246. 1945.

    Article  Google Scholar 

  117. Rasmussen, A. T. The mitochondria in nerve cells during hibernation and inanition in the woodchuck (Marmota monax). Jour. Comp. Neur.31: 37–49. 1919.

    Article  Google Scholar 

  118. Rezende-Pinto, M. C. de. O problem da origem dos plastidios. Brotéria Ciênc. Nat.17 (1): 5–48. 1948.

    Google Scholar 

  119. Rhoades, M. M. Genic induction of an inherited cytoplasmic difference. Proc. Nat. Acad. Sci.29: 327–329. 1943.

    Article  PubMed  CAS  Google Scholar 

  120. — Plastid mutations. Cold Spring Harbor Symp. Quant. Biol.11: 202–207. 1946.

    Google Scholar 

  121. Ritchie, D. A fixation study ofRussula emetica. Am. Jour. Bot.28: 582–588. 1941.

    Article  Google Scholar 

  122. Roberts, E. A. Electron microscope studies of plant cells and their contents showing structural and functional units of less than 100 ängstroms. Am. Jour. Bot.33: 231–232. 1946.

    Article  Google Scholar 

  123. — andSouthwick, M. D. Contribution of studies with the electron microscope to studies of the relationship of chromoplasts to carotene bodies and carotene bodies to vitamin A. Plant Physiol.23: 621–633. 1948.

    PubMed  CAS  Google Scholar 

  124. Ryland, A. G. A cytological study of the effects of colchicine, indole-3-acetic acid, potassium cyanide, and 2,4-D on plant cells. Jour. Elisha Mitch. Sci. Soc.64: 117–125. 1948.

    CAS  Google Scholar 

  125. Schneider, W. C. Intracellular distribution of enzymes. I. The distribution of succinic dehydrogenase, cytochrome oxidase, adenosine-triphosphotase, and phosphorous compounds in normal rat tissues. Jour. Biol. Chem.165: 585–593. 1946.

    CAS  Google Scholar 

  126. — Nucleic acids in normal and neoplastic tissues. Cold Spring Harbor Symp. Quant. Biol.12: 169–178. 1947.

    CAS  Google Scholar 

  127. —,et al. The distribution of cytochrome C and succinoxidase activity in rat liver fractions. Jour. Biol. Chem.172: 451–458. 1948.

    CAS  Google Scholar 

  128. Schultz, J. The question of plasmogenes. Science111: 403–407. 1950.

    Article  PubMed  Google Scholar 

  129. Sonneborn, T. M. Gene and cytoplasm. I. The determination and inheritance of the killer character in variety 4 ofParamecia aurelia. Proc. Nat. Acad. Sci.29: 329–338. 1943.

    Article  PubMed  CAS  Google Scholar 

  130. — Gene and cytoplasm. II. The bearing of the determination and inheritance of characters inParamecia aurelia on the problems of cytoplasmic inheritance,Pneumococcus transformations, mutations and development. Proc. Nat. Acad. Sci.29: 338–343. 1943.

    Article  PubMed  CAS  Google Scholar 

  131. -. The role of cytoplasm in heredity. Cent. Am. Ass. Adv. Sci.: 243–247. 1950.

  132. Sorokin, H. The distinction between mitochondria and plastids in living epidermal cells. Am. Jour. Bot.28: 476–485. 1941.

    Article  Google Scholar 

  133. Spiegelman, S. Nuclear and cytoplasmic factors controlling enzymatic constitution. Cold Spring Harbor Symp. Quant. Biol.11: 256–277. 1946.

    Google Scholar 

  134. — Differentiation as the controlled production of unique enzymatic patterns. Symp. Soc. Exp. Biol.2: 286–325. 1948.

    CAS  Google Scholar 

  135. Strugger, S. Die Anwendung des Phasenkontrast-Verfahrens zum Studium der Pflanzenzelle. Zeits. f. Naturforsh.2b: 146–151. 1947.

    Google Scholar 

  136. Takagi, S. Contribution to the study of mitochondria. Mem. Coll. Sci. Kyoto Imp. Univ. B.15: 167–206. 1939.

    Google Scholar 

  137. Tarwidowa, H. Über die Entstehung der Lipoidtropfchen beiBasidiobolus ranarum. La Cellule47: 204–216. 1938.

    Google Scholar 

  138. Vallmitjana, L. andGadea, E. El condrioma y su tinción con el método tano-argéntico de Fernández-Galiano. Boll. R. Soc. Española Hist Nat.42: 575–591. 1945.

    Google Scholar 

  139. Von Haam, E. andSchuh, M. Cytologic studies with the electron microscope. Jour. Tech. Methods & Bull. Int. Ass. Med. Mus.22: 75–80. 1942.

    Google Scholar 

  140. Wilber, C. G. Origin and function of the protoplasmic constituents inPelomyxa carolinensis. Biol. Bull.88: 207–219. 1945.

    Article  Google Scholar 

  141. Woods, M. W. andDu Buy, H. G. Synthesis of tobacco mosaic virus protein in relation to leaf chromoprotein and cell metabolism. Phytopath.31: 978–990. 1941.

    CAS  Google Scholar 

  142. —— Evidence for the evolution of phytopathogenic viruses from mitochondria and their derivatives. I. Cytological and genetic evidence. Phytopath.33: 637–655. 1943.

    Google Scholar 

  143. —— Cytoplasmic diseases and cancer. Science102: 591–593. 1945.

    Article  PubMed  Google Scholar 

  144. —— Addendum to “cytoplasmic diseases and cancer”. Science104: 469–470. 1946.

    Article  Google Scholar 

  145. —— Seasonal changes in biological equilibria involving two chondriosomal systems in variegatedHosta. Phytopath.36: 472–478. 1946.

    Google Scholar 

  146. —,et al. Evidence for the mitochondrial nature and function of melanin granules. Zoologica35: 30–31. 1950.

    Google Scholar 

  147. —,et al. Cytological studies on the nature of the cytoplasmic particulates in the Cloudman S91 mouse melanoma, the derived Algire S91 A partially amelanotic melanoma, and the Hardy-Passey mouse melanoma. Jour. Nat. Cancer Inst.9: 311–323. 1949.

    CAS  Google Scholar 

  148. Worley, L. G. Studies of the vitally stained Golgi apparatus. II. Yolk formation and pigment concentration in the musselMytilus californianus Conrad. Jour. Morph.75: 77–98. 1944.

    Article  Google Scholar 

  149. — andWorley, E. K. Studies of the supravitally stained Golgi apparatus. Jour. Morph.73: 365–399. 1943.

    Article  Google Scholar 

  150. Wright, S. The physiology of the gene. Physiol. Rev.21: 487–527. 1941.

    Google Scholar 

  151. Yin, H. C. Phosphorylase in plastids. Nature162: 928–929. 1948.

    Article  PubMed  CAS  Google Scholar 

  152. Yuasa, A. Studies in the cytology ofPteridophyta. XVI. Plastids and chondriosomes in the life cycle of polypodiaceous plants. Jap. Jour. Genet.15: 47–61. 1939.

    Article  Google Scholar 

  153. Zollinger, H. U. Experimenteller Beitrag zur Frage der Mitochondrienfunktion. Experientia4: 312–315. 1948.

    Article  PubMed  CAS  Google Scholar 

  154. — Cytologic studies with the phase microscope. II. The mitochondria and other cytoplasmic constituents under various experimental conditions. Am. Jour. Path.24: 569–589. 1948.

    CAS  Google Scholar 

  155. — Zum qualitativen Nucleoproteingehalt und zur Morphologie der Mitochondrien. Experientia6: 14–18. 1950.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplement to article in The Botanical Review6: 85–147. 1940.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newcomer, E.H. Mitochondria in plants. II. Bot. Rev 17, 53–89 (1951). https://doi.org/10.1007/BF02861786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861786

Keywords

Navigation