Skip to main content
Log in

Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

We present a numerical cladistic (parsimony) analysis of seed plants plus progymnosperms, using characters from all parts of the plant body, outgroup comparison, and a method of character coding that avoids biases for or against alternative morphological theories. The robustness of the results was tested by construction of alternative trees and analysis of subsets of the data. These experiments show that although some clades are strongly supported, they can often be related to each other in very different but nearly equally parsimonious ways, apparently because of extensive homoplasy. Our results support Rothwell’s idea that coniferopsids are derived fromCallistophyton- like platyspermic seed ferns with saccate pollen, but the hypothesis that they evolved fromArchaeopteris- like progymnosperms and the seed arose twice is nearly as parsimonious. Meyen’s division of seed plants into radiospermic and primarily and secondarily platyspermic lines is highly unparsimonious, but his suggestion that ginkgos are related to peltasperms deserves attention. Angiosperms belong among the platyspermic groups, as the sister group of Bennettitales,Pentoxylon, and Gnetales, and this “anthophyte” clade is best related toCaytonia and glossopterids, although relationships with other combinations of Mesozoic seed fern taxa are nearly as parsimonious. These results imply that the angiosperm carpel can be interpreted as a modified pinnate sporophyll bearing anatropous cupules (=bitegmic ovules), while gnetalian strobili are best interpreted as aggregations of highly reduced bennettitalian flowers, as anticipated by Arber and Parkin and Crane. Our most parsimonious trees imply that the angiosperm line (though not necessarily all its modern features) extended back to the Triassic, but a later derivation of angiosperms from some species ofCaytonia or Bennettitales, which would be nearly as parsimonious, should also be considered. These results raise the possibility that many features considered key adaptations in the origin and rise of angiosperms (insectpollinated flowers, rapid reproduction, drought tolerance) were actually inherited from their gymnospermous precursors. The explosive diversification of angiosperms may instead have been a consequence of carpel closure, resulting in increased speciation rates due to potential for stigmatic isolating mechanisms and/or new means of dispersal. DNA sequencing of extant plants and better information on anatomy, chemistry, sporophyll morphology, and embryology of Bennettitales and Caytoniales and the morphological diversity of Mesozoic anthophytes could provide critical tests of relationships.

Résumé

Nous présentons une analyse cladistique numérique (de parcimonie, ou économie d’hypothèses) des Spermatophytes plus Progymnospermes, utilisant des caractères de tous les organes du corps végétal, la comparaison extra-groupe, et une méthode de codification de caractères qui évite des prédispositions en faveur de ou contre les théories morphologiques alternatives. La solidité des résultats a été testé par la construction d’arbres phylétiques alternatifs et l’analyse de sous-ensembles des données. Selon ces expériences, certains phylums sont bien appuyés, mais ils peuvent être reliés de façons très différentes mais presque également économiques, apparemment à cause d’homoplasie répandue. Nos résultats confirment le concept de Rothwell, selon lequel les Coniféropsides sont dérivées de Ptéridospermes platyspermiques à pollen saccate proches deCallistophyton, mais l’hypothèse d’une dérivation de Progymnospermes proches d’Archaeopteris et d’une origine diphylétique de la graine est presque aussi économique. La division de Meyen des Spermatophytes en lignées radiospermiques et primairement et secondairement platyspermiques est très peu économique, mais son concept d’une affinité entre les Ginkgoales et les Peltaspermes mérite de l’attention. Les Angiospermes se situent parmi les groupes platyspermiques, comme groupe-frère des Bennettitales,Pentoxylon, et Gnetales, et le phylum ainsi constitué (“Anthophytes”) est le mieux lié àCaytonia et aux Glossoptérides, bien que des rapports avec d’autres combinaisons de taxons de Ptéridospermes mésozoïques soient presque aussi économiques. Ces résultats indiquent que le carpelle des Angiospermes peut être interprété comme une sporophylle pennée modifiée portant des cupules anatropes (=ovules bitégumentés), puisque les strobiles des Gnetales sont le mieux interprétés comme des agglomérations de fleurs bennettitaliennes fort réduites, comme l’a proposé Arber et Parkin et Crane. Nos arbres phylétiques les plus économiques supposent que la lignée des Angiospermes (mais pas forcément tous ses traits modernes) s’étend jusqu’au Trias, mais une origine plus récente à partir de quelque espèce deCaytonia ou de Bennettitales, hypothèses presque aussi économiques, doit aussi être considérée. Ces résultats suggèrent que plusieurs traits considérés comme des adaptationsclés dans l’origine ou l’expansion des Angiospermes (fleurs entomophiles, rapidité de reproduction, tolérance de sécheresse) étaient en fait hérités de leurs ancêtres gymnospermiques. La diversification explosive des Angiospermes pourrait plutôt être une conséquence de la clôture du carpelle, conduisant à un taux de spéciation élevé dû au potential pour des mécanismes d’isolement stigmatiques et/ou de nouveaux moyens de dispersion. L’étude de séquences d’ADN des végétaux actuels et de meilleurs renseignements sur l’anatomie, la phytochimie, la morphologie des sporophylles, et l’embryologie des Bennettitales et Caytoniales pourraient fournir des testes critiques de rapports phylétiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andrews, H. N., P. G. Gensel &W. H. Forbes. 1974. An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology17: 387–408.

    Google Scholar 

  • Arber, E. A. N. &J. Parkin. 1907. On the origin of angiosperms. J. Linn. Soc, Bot.38: 29–80.

    Google Scholar 

  • ——. 1908. Studies on the evolution of the angiosperms. The relationship of the angiosperms to the Gnetales. Ann. Bot. (London)22: 489–515.

    Google Scholar 

  • Archangelsky, S. 1965. Fossil Ginkgoales from the Ticó Flora, Santa Cruz Province, Argentina. Bull. Brit. Mus. (Nat. Hist.), Geol.10: 121–137

    Google Scholar 

  • — 1968. Studies on Triassic fossil plants from Argentina. IV. The leaf genusDicroidium and its possible relation toRhexoxylon stems. Palaeontology11: 500–515.

    Google Scholar 

  • — &D. W. Brett. 1961. Studies on Triassic fossil plants from Argentina. I.Rhexoxylon from the Ischigualasto Formation. Philos. Trans., Ser. B244: 1–19.

    Article  Google Scholar 

  • ——. 1963. Studies on Triassic fossil plants from Argentina. II.Michelilloa waltonii nov. gen. et spec. from the Ischigualasto Formation. Ann. Bot. (London)27: 147–154.

    Google Scholar 

  • Arnold, C. A. 1948. Classification of gymnosperms from the viewpoint of paleobotany. Bot. Gaz.110: 2–12.

    Article  Google Scholar 

  • Ash, S. R. 1972. Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology15: 598–618.

    Google Scholar 

  • Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution6: 29–60.

    Article  Google Scholar 

  • —. 1970. Mesozoic paleogeography and early angiosperm history. Bot. Rev.36: 277–319.

    Article  Google Scholar 

  • Bailey, I. W. 1944. The development of vessels in angiosperms and its significance in morphological research. Amer. J. Bot.31: 421–428.

    Article  Google Scholar 

  • —. 1956. Nodal anatomy in restrospect. J. Arnold Arbor.37: 269–287.

    Google Scholar 

  • Bancroft, N. 1913.Rhexoxylon africanum, a new Medullosean stem. Trans. Linn. Soc. London, Bot.8: 87–103.

    Google Scholar 

  • Banks, H. P. 1968. The early history of land plants. Pages 73–107in E. T. Drake (ed.), Evolution and environment. Yale University Press, New Haven.

    Google Scholar 

  • Basinger, J. F., G. W. Rothwell &W. N. Stewart. 1974. Cauline vasculature and leaf trace production in medullosan pteridosperms. Amer. J. Bot.61: 1002–1015.

    Article  Google Scholar 

  • Beck, C. B. 1957.Tetraxylopteris schmidtii gen. et sp. nov., a probable pteridosperm precursor from the Devonian of New York. Amer. J. Bot.44: 350–367.

    Article  Google Scholar 

  • —. 1960. The identity ofArchaeopteris andCallixylon. Brittonia12: 351–368.

    Article  Google Scholar 

  • —. 1966. On the origin of gymnosperms. Taxon15: 337–339.

    Article  Google Scholar 

  • —. 1967.Eddya sullivanensis, gen. et sp. nov., a plant of gymnospermic morphology from the Upper Devonian of New York. Palaeontographica, Abt. B121: 1–22.

    Google Scholar 

  • —. 1970. The appearance of gymnospermous structure. Biol. Rev.45: 379–400.

    Article  Google Scholar 

  • —. 1971. On the anatomy and morphology of lateral branch systems ofArchaeopteris. Amer. J. Bot.58: 758–784.

    Article  Google Scholar 

  • —. 1976. Current status of the Progymnospermopsida. Rev. Palaeobot. Palynol.21: 5–23.

    Article  Google Scholar 

  • —. 1979. The primary vascular system ofCallixylon. Rev. Palaeobot. Palynol.28: 103–115.

    Article  Google Scholar 

  • —. 1981.Archaeopteris and its role in vascular plant evolution. Pages 193–230in K. J. Niklas (ed.), Paleobotany, paleoecology, and evolution. Vol. I. Praeger, New York.

    Google Scholar 

  • —. 1985. Gymnosperm phylogeny—A commentary on the views of S.V. Meyen. Bot. Rev.51: 273–294.

    Google Scholar 

  • —,R. Schmid &G. W. Rothwell. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev.48: 691–815.

    Article  Google Scholar 

  • Beeston, J. W. 1972. A specimen ofAraucarioxylon arberi (Seward) Beeston comb. nov. from Queensland. Geol. Surv. Queensland Publ.352: 17–20.

    Google Scholar 

  • Behnke, H. D. 1974. Sieve-element plastids of Gymnospermae: Their ultrastructure in relation to systematics. Pl. Syst. Evol.123: 1–12.

    Article  Google Scholar 

  • Benzing, D. H. 1967. Developmental patterns in stem primary xylem of woody Ranales. II. Species with trilacunar and multilacunar nodes. Amer. J. Bot.54: 813–820.

    Article  Google Scholar 

  • Berry, E. W. 1939 The fossil plants from Huallanca, Peru. Johns Hopkins Univ. Stud. Geol.13: 73–93

    Google Scholar 

  • Bierhorst, D. W. 1971 Morphology of vascular plants. Macmillan, New York.

    Google Scholar 

  • Blanc-Louvel, C. 1966 Etude anatomique comparée des tiges et des pétioles d’une Ptéridospermale du Carbonifère du genreLyginopteris Potonié. Mém. Mus. Natl. Hist. Nat., Sér. C18: 1–103.

    Google Scholar 

  • Bose, M. N. 1953.Bucklandia sahnii sp. nov. from the Jurassic of the Rajmahal Hills, Bihar. Palaeobotanist2: 41–50.

    Google Scholar 

  • Bremer, K. 1985. Summary of green plant phylogeny and classification. Cladistics1: 369–385.

    Article  Google Scholar 

  • — &H.-E. Wanntorp. 1981. A cladistic classification of green plants. Nord. J. Bot.1: 1–3.

    Google Scholar 

  • Brenchley, W. E. 1913. On branching specimens ofLyginodendron oldhamium. J. Linn. Soc, Bot.41: 349–356.

    Google Scholar 

  • Brenner, G. J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pages 23–47in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.

    Google Scholar 

  • Brooks, D. R. 1984. Quantitative parsimony. Pages 119–132in T. Duncan and T. F. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.

    Google Scholar 

  • Burger, W. C. 1977. The Piperales and the monocots. Alternative hypotheses for the origin of monocotyledonous flowers. Bot. Rev.43: 345–393.

    Article  Google Scholar 

  • —. 1981a. Heresy revived: The monocot theory of angiosperm origin. Evol. Theory5: 189–225.

    Google Scholar 

  • —. 1981b. Why are there so many kinds of flowering plants? BioScience31: 572, 577–581.

    Article  Google Scholar 

  • Cantino, P. D. 1985. Phylogenetic inference from nonuniversal derived character states. Syst. Bot.10: 119–122.

    Article  Google Scholar 

  • Carlquist, S. 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley.

    Google Scholar 

  • Chamberlain, C. J. 1935. Gymnosperms: Structure and evolution. University of Chicago Press, Chicago (republished by Dover, New York).

    Google Scholar 

  • Cornet, B. 1977. Angiosperm-like pollen with tectate-columellate wall structure from the Upper Triassic (and Jurassic) of the Newark Supergroup, USA. Amer. Assoc. Strat. Palynol. 10th Annual Meeting, Tulsa, Abstr. 8–9.

  • Crane, P. R. 1985a. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard.72: 716–793.

    Article  Google Scholar 

  • —. 1985b. Phylogenetic relationships in seed plants. Cladistics1: 329–348.

    Google Scholar 

  • -. (In press). Vegetational consequences of the angiosperm diversification.In E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.

  • Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston.

    Google Scholar 

  • Delevoryas, T. 1968. Some aspects of cycadeoid evolution. J. Linn. Soc, Bot.61: 137–146.

    Google Scholar 

  • Dilcher, D. L. 1979. Early angiosperm reproduction: An introductory report. Rev. Palaeobot. Palynol.27: 291–328.

    Article  Google Scholar 

  • Douglas, J. G. 1969. The Mesozoic floras of Victoria. Parts 1 and 2. Mem. Geol. Surv. Victoria28: 1–310.

    Google Scholar 

  • Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor.50: 1–35.

    Google Scholar 

  • —. 1978. Origin of angiosperms. Annual Rev. Ecol. Syst.9: 365–392.

    Article  Google Scholar 

  • —. 1984. Evolutionary, geographic, and ecological aspects of the rise of angiosperms. Proc. 27th Int. Geol. Congr. (Moscow, 1984), vol. 2, VNU Science Press, Utrecht, 23–33.

    Google Scholar 

  • —,P. Biens, A. Doerenkamp &S. Jardiné. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine1:451–473.

    Google Scholar 

  • — &M. J. Donoghue. 1986. Relationships of angiosperms and Gnetales: A numerical cladistic analysis. Pages 177–198in B. A. Thomas & R. A. Spicer (eds.), Systematic and taxonomic approaches in palaeobotany, Syst. Assoc. Spec. Vol. 31. Oxford University Press, Oxford.

    Google Scholar 

  • -& -. (In press a). The origin of angiosperms: A cladistic approach.In E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.

  • -& -. (In press b). The importance of fossils in elucidating seed plant phylogeny and macroevolution. Rev. Palaeobot. Palynol.

  • — &L. J. Hickey. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pages 139–206in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.

    Google Scholar 

  • —,S. Jardiné &A. Doerenkamp. 1982.Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine6: 39–117.

    Google Scholar 

  • —,M. Van Campo &B. Lugardon. 1975. Observations on exine structure ofEucommiidites and Lower Cretaceous angiosperm pollen. Pollen & Spores17: 429–486.

    Google Scholar 

  • Drinnan, A. N. &T. C. Chambers. 1985. A reassessment ofTaeniopteris daintreei from the Victorian Early Cretaceous: A member of the Pentoxylales and a significant Gondwanaland plant. Austral. J. Bot.33: 89–100.

    Article  Google Scholar 

  • Eames, A. J. 1952. Relationships of the Ephedrales. Phytomorphology2: 79–100.

    Google Scholar 

  • Ehrendorfer, F. 1976. Evolutionary significance of chromosomal differentiation patterns in gymnosperms and primitive angiosperms. Pages 220–240in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.

    Google Scholar 

  • Eldredge, N. 1979. Cladism and common sense. Pages 165–198in J. Cracraft&N. Eldredge (eds.), Phylogenetic analysis and paleontology. Columbia University Press, New York.

    Google Scholar 

  • — &J. Cracraft. 1980. Phylogenetic patterns and the evolutionary process. Columbia University Press, New York.

    Google Scholar 

  • Esau, K. 1969. The phloem. Encyclopedia of plant anatomy5(2): 1–505. Borntraeger, Berlin.

    Google Scholar 

  • Farris, J. S. 1970. Methods for computing Wagner trees. Syst. Zool.19: 83–92.

    Article  Google Scholar 

  • —. 1983. The logical basis of phylogenetic analysis. Pages 7–36in N. I. Platnick & V. A. Funk (eds.), Advances in cladistics. Vol. 2. Columbia University Press, New York.

    Google Scholar 

  • Felsenstein, J. 1978. The number of evolutionary trees. Syst. Zool.27: 27–33.

    Article  Google Scholar 

  • —. 1983. Parsimony in systematics: Biological and statistical issues. Annual Rev. Ecol. Syst.14:313–333.

    Article  Google Scholar 

  • —. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Fisher, D. C. 1980. The role of stratigraphic data in phylogenetic inference. Geol. Soc. Amer. Abstr. with Programs12: 426.

    Google Scholar 

  • —. 1981. The role of functional analysis in phylogenetic inference: Examples from the history of the Xiphosura. Amer. Zool.21: 47–62.

    Google Scholar 

  • Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. Erster Teil: Morphologie und Epidermisstruktur der Assimilationsorgane bei der rezenten Koniferen. Kongl. Svenska Vetenskapsakad. Handl., Ser. 310: 1–588.

    Google Scholar 

  • —. 1949. The morphology ofTrichopitys heteromorpha Saporta, a seed-plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae. Acta Horti Berg.15: 79–109.

    Google Scholar 

  • —. 1951. Evolution in cordaites and conifers. Acta Horti Berg.15: 285–388.

    Google Scholar 

  • Galtier, J. &J. C. Holmes. 1982. New observations on the branching of Carboniferous ferns and pteridosperms. Ann. Bot. (London)49: 737–746.

    Google Scholar 

  • Gaussen, H. 1946. Les Gymnospermes, actuelles et fossiles. Trav. Lab. Forest. Toulouse, tome II, vol. 1.

  • Gensel, P. G. 1984. A new Lower Devonian plant and the early evolution of leaves. Nature309: 785–787.

    Article  Google Scholar 

  • Gibbs, R. D. 1957. The Mäule reaction, lignin, and the relationships between woody plants. Pages 269–312in K. V. Thimann (ed.), The physiology of forest trees. Ronald Press, New York.

    Google Scholar 

  • Gordon, W. T. 1935. The genusPitys, Witham, emend. Trans. Roy. Soc. Edinburgh58: 279–311.

    Google Scholar 

  • Gottlieb, O. R. &K. Kubitzki. 1984. Chemosystematics of the Gnetatae and the chemical evolution of seed plants. Pl. Med.1984: 380–385.

    Google Scholar 

  • Gould, R. E. 1971.Lyssoxylon grigsbyi, a cycad trunk from the Upper Triassic of Arizona and New Mexico. Amer. J. Bot.58: 239–248.

    Article  Google Scholar 

  • —. 1975. A preliminary report on petrified axes ofVertebraria from the Permian of eastern Australia. Pages 109–115in K. S. W. Campbell (ed.), Gondwana geology. Australian National University Press, Canberra.

    Google Scholar 

  • — &T. Delevoryas. 1977. The biology ofGlossopteris: Evidence from petrified seedbearing and pollen-bearing organs. Alcheringa1: 387–399.

    Google Scholar 

  • Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • — &N. Eldredge. 1977. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology3: 115–151.

    Google Scholar 

  • Halle, T. G. 1929. Some seed-bearing pteridosperms from the Permian of China. Kongl. Svenska Vetenskapsakad. Handl., Ser. 36(8): 1–24.

    Google Scholar 

  • Harris, T. M. 1932a. The fossil flora of Scoresby Sound East Greenland. Part 2: Description of seed plantsincertae sedis together with a discussion of certain cycadophyte cuticles. Meddel. Grønland85(3): 1–112.

    Google Scholar 

  • —. 1932b. The fossil flora of Scoresby Sound East Greenland. Part 3: Caytoniales and Bennettitales. Meddel. Grønland85(5): 1–133.

    Google Scholar 

  • —. 1940.Caytonia. Ann Bot. (London)4: 713–734.

    Google Scholar 

  • —. 1951. The relationships of the Caytoniales. Phytomorphology1: 29–39.

    Google Scholar 

  • —. 1954. Mesozoic seed cuticles. Svensk Bot. Tidskr.48: 281–291.

    Google Scholar 

  • —. 1958. The seed ofCaytonia. Palaeobotanist7: 93–106.

    Google Scholar 

  • —. 1962. The occurrence of the fructificationCarnoconites in New Zealand. Trans. Roy. Soc. New Zealand, Geol.1: 17–27.

    Google Scholar 

  • -. 1964. The Yorkshire Jurassic flora. II. Caytoniales, Cycadales & pteridosperms. Brit. Mus. (Nat. Hist.), London.

  • -. 1969. The Yorkshire Jurassic flora. III. Bennettitales. Brit. Mus. (Nat. Hist.), London.

  • —. 1971. The stem ofCaytonia. Geophytology1: 23–29.

    Google Scholar 

  • —. 1976. The Mesozoic gymnosperms. Rev. Palaeobot. Palynol.21: 119–134.

    Article  Google Scholar 

  • Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.

    Google Scholar 

  • Hill, C. R. &P. R. Crane. 1982. Evolutionary cladistics and the origin of angiosperms. Pages 269–361in K. A. Joysey & A. E. Friday (eds.), Problems of phylogenetic reconstruction. Syst. Assoc. Spec. Vol. 21. Academic Press, London.

    Google Scholar 

  • Hoskins, J. H. &A. T. Cross. 1946. Studies in the Trigonocarpales. Part I.Pachytesta vera, a new species from the Des Moines Series of Iowa. Amer. Midl. Naturalist36: 207–250.

    Article  Google Scholar 

  • Hughes, N. F. 1976. Palaeobiology of angiosperm origins. Cambridge University Press, Cambridge.

    Google Scholar 

  • Iltis, H. H. 1983. From teosinte to maize: The catastrophic sexual transmutation. Science222: 886–894.

    Article  PubMed  Google Scholar 

  • Jablonski, D. 1986. Background and mass extinctions: The alternation of macroevolutionary regimes. Science222: 886–894.

    Google Scholar 

  • —,K. W. Flessa &J. W. Valentine. 1985. Biogeography and paleobiology. Paleobiology11: 75–90.

    Google Scholar 

  • Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. Amer. Naturalist104: 501–528.

    Article  Google Scholar 

  • Jennings, J. R. 1976. The morphology and relationships ofRhodea, Telangium, Telangiopsis, andHeterangium. Amer. J. Bot.63: 1119–1133.

    Article  Google Scholar 

  • Kaplan, D. R. 1984. The concept of homology and its central role in the elucidation of plant systematic relationships. Pages 51–70in T. Duncan & T. F. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.

    Google Scholar 

  • Kluge, A. G. &J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool.18: 1–32.

    Article  Google Scholar 

  • Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pages 21–68in M. H. Nitecki (ed.), Extinctions. University of Chicago Press, Chicago.

    Google Scholar 

  • Krassilov, V. A. 1977. The origin of angiosperms. Bot. Rev.43: 143–176.

    Article  Google Scholar 

  • Le Thomas, A. 1980-81. Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms. Pollen & Spores22: 267–342,23: 5–36.

    Google Scholar 

  • Long, A. G. 1961.Tristichia ovensi gen. et sp. nov., a protostelic Lower Carboniferous pteridosperm from Berwickshire and East Lothian, with an account of some associated seeds and cupules. Trans. Roy. Soc. Edinburgh64: 477–489.

    Google Scholar 

  • —. 1963. Some specimens ofLyginorachis papilio Kidston associated with stems ofPitys. Trans. Roy. Soc. Edinburgh65: 211–224.

    Google Scholar 

  • —. 1975. Further observations on some Lower Carboniferous seeds and cupules. Trans. Roy. Soc. Edinburgh69: 267–293.

    Google Scholar 

  • —. 1979. Observations on the Lower Carboniferous genusPitus Witham. Trans. Roy. Soc. Edinburgh70: 111–127.

    Google Scholar 

  • Maddison, W. P., M. J. Donoghue &D. R. Maddison. 1984. Outgroup analysis and parsimony. Syst. Zool.33: 83–103.

    Article  Google Scholar 

  • Maheshwari, H. K. 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica, Abt.B 138: 1–43.

    Google Scholar 

  • Maheshwari, P. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York.

    Google Scholar 

  • — &H. Singh. 1967. The female gametophyte of gymnosperms. Biol. Rev.42: 88–130.

    Article  Google Scholar 

  • — &V. Vasil. 1961. The stomata ofGnetum. Ann. Bot. (London)25: 313–319.

    Google Scholar 

  • Mamay, S. H. 1976. Paleozoic origin of the cycads. U.S. Geol. Surv. Profess. Pap.934: 1–48.

    Google Scholar 

  • Mapes, G. &G. W. Rothwell. 1980.Quaestora amplecta gen. et sp. n., a structurally simple medullosan stem from the Upper Mississippian of Arkansas. Amer. J. Bot.67: 636–647.

    Article  Google Scholar 

  • ——. 1984. Permineralized ovulate cones ofLebachia from late Palaeozoic limestones of Kansas. Palaeontology27: 69–94.

    Google Scholar 

  • Martens, P. 1971. Les Gnétophytes. Encyclopedia of plant anatomy12(2): 1–295. Borntraeger, Berlin.

    Google Scholar 

  • Meeuse, A. D. J. 1963. From ovule to ovary: A contribution to the phylogeny of the megasporangium. Acta Biotheor.16: 127–182.

    Article  Google Scholar 

  • —. 1972a. Facts and fiction in floral morphology with special reference to the Polycarpicae. Acta Bot. Neerl.21: 113–127, 235–-252, 351–365.

    Google Scholar 

  • —. 1972b. Sixty-five years of theories of the multiaxial flower. Acta Biotheor.21: 167–202.

    Article  Google Scholar 

  • Meyen, S. V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev.50: 1–112.

    Article  Google Scholar 

  • Mickevich, M. F. & J. S. Farris. 1982. Phylogenetic analysis system (PHYSYS) (FORTRAN V software system of cladistic and phenetic algorithms).

  • Millay, M. A. &D. A. Eggert. 1974. Microgametophyte development in the Paleozoic seed fern family Callistophytaceae. Amer. J. Bot.61: 1067–1075.

    Article  Google Scholar 

  • —— &R. L. Dennis. 1978. Morphology and ultrastructure of four Pennsylvanian prepollen types. Micropaleontology24: 305–315.

    Article  Google Scholar 

  • — &T. N. Taylor. 1976. Evolutionary trends in fossil gymnosperm pollen. Rev. Palaeobot. Palynol.21: 65–91.

    Article  Google Scholar 

  • Miller, C. N. 1985. A critical review of S. V. Meyen’s “Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record.” Bot. Rev.51: 295–318.

    Google Scholar 

  • Mishler, B. D. &S. P. Churchill. 1984. A cladistic approach to the phylogeny of the “bryophytes.” Brittonia36: 406–424.

    Article  Google Scholar 

  • Muhammad, A. F. &R. Sattler. 1982. Vessel structure ofGnetum and the origin of angiosperms. Amer. J. Bot.69: 1004–1021.

    Article  Google Scholar 

  • Mulcahy, D. L. 1979. The rise of angiosperms: A genecological factor. Science206: 20–23.

    Article  PubMed  Google Scholar 

  • Muller, J. 1970. Palynological evidence on early differentiation of angiosperms. Biol. Rev.45:417–450.

    Article  Google Scholar 

  • —. 1981. Fossil pollen records of extant angiosperms. Bot. Rev.47: 1–142.

    Article  Google Scholar 

  • Nautiyal, D. D., S. Singh &D. D. Pant. 1976. Epidermal structure and ontogeny of stomata inGnetum gnemon, G. montanum andG. ula. Phytomorphology26: 282–296.

    Google Scholar 

  • Nishida, M. 1969. A petrified trunk ofBucklandia choshiensis sp. nov. from the Cretaceous of Choshi, Chiba Prefecture, Japan. Phytomorphology19: 28–34.

    Google Scholar 

  • Oestry-Stidd, L. L. &B. M. Stidd. 1976. Paracytic (syndetocheilic) stomata in Carboniferous seed ferns. Science193: 156–157.

    Article  Google Scholar 

  • Pant, D. D. 1977. The plant ofGlossopteris. J. Indian Bot. Soc.56: 1–23.

    Google Scholar 

  • — &D. D. Nautiyal. 1960. Some seeds and sporangia ofGlossopteris flora from Raniganj Coalfield, India. Palaeontographica, Abt.B 107: 41–64.

    Google Scholar 

  • ——. 1967. On the structure ofBuriadia heterophylla (Feistmantel) Seward & Sahni and its fructification. Philos. Trans., Ser. B252: 27–48.

    Article  Google Scholar 

  • ——. 1984. On the morphology and structure ofOttokaria zeilleri sp. nov. — A female fructification ofGlossopteris. Palaeontographica, Abt. B193: 127–152.

    Google Scholar 

  • — &R. S. Singh. 1974. On the stem and attachment ofGlossopteris andGangamopteris leaves. Part II — Structural features. Palaeontographica, Abt. B147: 42–73.

    Google Scholar 

  • Parenti, L. R. 1980. A phylogenetic analysis of the land plants. Biol. J. Linn. Soc.13: 225–242.

    Article  Google Scholar 

  • Payne, W. W. 1979. Stomatal patterns in embryophytes: Their evolution, ontogeny and interpretation. Taxon28: 117–132.

    Article  Google Scholar 

  • Pettitt, J. M. 1966. Exine structure in some fossil and Recent spores and pollen as revealed by light and electron microscopy. Bull. Brit. Mus. (Nat. Hist.), Geol.13: 223–257.

    Google Scholar 

  • —. 1969. Pteridophytic features in some Lower Carboniferous seed megaspores. Bot. J. Linn. Soc.62: 233–239.

    Google Scholar 

  • Pray, T. R. 1955. Foliar venation of angiosperms. II. Histogenesis of the venation ofLiriodendron. Amer. J. Bot.42: 18–27.

    Article  Google Scholar 

  • Rasmussen, F. N. 1983. On “apomorphic tendencies” and phylogenetic inference. Syst. Bot.8: 334–337.

    Google Scholar 

  • Regal, P. J. 1977. Ecology and evolution of flowering plant dominance. Science196: 622–629.

    Article  PubMed  Google Scholar 

  • Reihman, M. A. &J. T. Schabilion. 1976. Cuticles of two species ofAlethopteris. Amer. J. Bot.63: 1039–1046.

    Article  Google Scholar 

  • ——. 1978. A reconsideration of the stomatal structure ofAlethopteris sullivantii. Bot. Soc. Amer. Misc. Ser. Publ.156: 33.

    Google Scholar 

  • Retallack, G. J. 1985. Reconstructions of Scottish, Early Carboniferous, seed ferns. Amer. J. Bot.72: 898.

    Google Scholar 

  • — &D. L. Dilcher. 1981. Arguments for a glossopterid ancestry of angiosperms. Paleobiology7: 54–67.

    Google Scholar 

  • Reymanówna, M. 1974. On anatomy and morphology ofCaytonia. Birbal Sahni Inst. Palaeobot. Spec. Publ.2: 50–57.

    Google Scholar 

  • Rodin, R. J. 1967. Ontogeny of foliage leaves inGnetum. Phytomorphology17: 118–128.

    Google Scholar 

  • Rothwell, G. W. 1972. Evidence of pollen tubes in Paleozoic pteridosperms. Science175: 772–774.

    Article  PubMed  Google Scholar 

  • —. 1975. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica, Abt. B151: 171–196.

    Google Scholar 

  • —. 1981. The Callistophytales (Pteridospermopsida): Reproductively sophisticated Paleozoic gymnosperms. Rev. Palaeobot. Palynol.32: 103–121.

    Article  Google Scholar 

  • —. 1982. New interpretations of the earliest conifers. Rev. Palaeobot. Palynol.37: 7–28.

    Article  Google Scholar 

  • —. 1985. The role of comparative morphology and anatomy in interpreting the systematics of fossil gymnosperms. Bot. Rev.51: 318–327.

    Google Scholar 

  • — &D. M. Erwin. 1986. Characterizing the most ancient gymnosperms. Amer. J. Bot.73: 710.

    Google Scholar 

  • Sahni, B. 1932. A petrifiedWilliamsonia (W. sewardiana, sp. nov.) from the Rajmahal Hills, India. Mem. Geol. Surv. India, Palaeontologia Indica, n. s.,20(Mem. No. 3): 1–19.

    Google Scholar 

  • —. 1948. The Pentoxyleae: A new group of Jurassic gymnosperms from the Rajmahal Hills of India. Bot. Gaz.110: 47–80.

    Article  Google Scholar 

  • Schabilion, J. T. &N. C. Brotzman. 1979. A tetrahedral megaspore arrangement in a seed fern ovule of Pennsylvanian age. Amer. J. Bot.66: 744–745.

    Article  Google Scholar 

  • Scheckler, S. E. 1974. Systematic characters in Devonian ferns. Ann. Missouri Bot. Gard.61: 462–473.

    Article  Google Scholar 

  • —. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Canad. J. Bot.56: 3136–3170.

    Article  Google Scholar 

  • — &H. P. Banks. 1971a. Anatomy and relationships of some Devonian progymnosperms from New York. Amer. J. Bot.58: 737–751.

    Article  Google Scholar 

  • ——. 1971b.Proteokalon a new genus of progymnosperms from the Devonian of New York state and its bearing on phylogenetic trends in the group. Amer. J. Bot.58: 874–884.

    Article  Google Scholar 

  • Schopf, J. M. 1976. Morphologic interpretation of fertile structures in glossopterid gymnosperms. Rev. Palaeobot. Palynol.21: 25–64.

    Article  Google Scholar 

  • Scott, D. H. 1923. Studies in fossil botany, ed. 3, vol. II, Spermophyta. A. & C. Black, London.

    Google Scholar 

  • Sharma, B. D. 1970. On the structure of the seeds ofWilliamsonia collected from the Middle Jurassic rocks of Amarjola in the Rajmahal Hills, India. Ann. Bot. (London)34: 1071–1078.

    Google Scholar 

  • —. 1974. Ovule ontogeny inWilliamsonia Carr. Palaeontographica, Abt. B148:137–143.

    Google Scholar 

  • —. 1977. Indian Williamsonias—An illustrated review. Acta Palaeobot.18: 19–29.

    Google Scholar 

  • Smiley, C. J. 1970. Later Mesozoic flora from Maran, Pahang, West Malaysia. Geol. Soc. Malaysia Bull.3: 77–113.

    Google Scholar 

  • Smith, J. D., J. S. Farris & M. F. Mickevich. 1982. Documentation for phylogenetic analysis system (online PHYSYS documentation).

  • Smoot, E. L., R. K. Jansen &T. N. Taylor. 1981. A phylogenetic analysis of the land plants: A botanical commentary. Taxon30: 65–67.

    Article  Google Scholar 

  • Sober, E. 1983. Parsimony in systematics: Philosophical issues. Annual Rev. Ecol. Syst.14: 335–357.

    Article  Google Scholar 

  • —. 1985. A likelihood justification of parsimony. Cladistics1: 209–233.

    Google Scholar 

  • Sporne, K. R. 1965. The morphology of gymnosperms. Hutchinson University Library, London.

    Google Scholar 

  • Stanley, S. M. 1979. Macroevolution: Pattern and process. W. H. Freeman, San Francisco.

    Google Scholar 

  • Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • —. 1981. Why are there so many species of flowering plants? BioScience31: 573–577.

    Article  Google Scholar 

  • Sterling, C. 1963. Structure of the male gametophyte in gymnosperms. Biol. Rev.38:167–203.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stidd, B. M. 1981 The current status of medullosan seed ferns. Rev. Palaeobot. Palynol.32: 63–101.

    Article  Google Scholar 

  • — &K. Cosentino. 1976. Nucellangium: Gametophytic structure and relationship toCordaites. Bot. Gaz.137: 242–249.

    Article  Google Scholar 

  • — &J. W. Hall. 1970. The natural affinity of the Carboniferous seed,Callospermarion. Amer. J. Bot.57: 827–836.

    Article  Google Scholar 

  • —,M. O. Rischbieter &T. L. Phillips. 1985. A new lyginopterid pollen organ with alveolate pollen exines. Amer. J. Bot.72: 501–508.

    Article  Google Scholar 

  • Takaso, T. 1985. A developmental study of the integument in gymnosperms 3.Ephedra distachya L. andE. equisetina Bge. Acta Bot. Neerl.34: 33–48.

    Google Scholar 

  • Takhtajan, A. L. 1969. Flowering plants: Origin and dispersal. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • —. 1976. Neoteny and the origin of flowering plants. Pages 207–219in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.

    Google Scholar 

  • Taylor, T. N. 1965. Paleozoic seed studies: A monograph of the American species ofPachytesta. Palaeontographica, Abt. B117: 1–46.

    Google Scholar 

  • —. 1973. A consideration of the morphology, ultrastructure and multicellular microgametophyte ofCycadeoidea dacotensis pollen. Rev. Palaeobot. Palynol.16: 157–164.

    Article  Google Scholar 

  • —. 1981. Paleobotany: An introduction to fossil plant biology. McGraw-Hill, New York.

    Google Scholar 

  • — &S. Archangelsky. 1985. The Cretaceous pteridospermsRuflorinia andKtalenia and implications on cupule and carpel evolution. Amer. J. Bot.72: 1842–1853.

    Article  Google Scholar 

  • —,M. A. Cichan &A. M. Baldoni. 1984. The ultrastructure of Mesozoic pollen:Pteruchus dubius (Thomas) Townrow. Rev. Palaeobot. Palynol.41: 319–327.

    Article  Google Scholar 

  • — &M. A. Millay. 1981. Morphologic variability of Pennsylvanian lyginopterid seed ferns. Rev. Palaeobot. Palynol.32: 27–62.

    Article  Google Scholar 

  • Thomas, H. H. 1925. The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Philos. Trans., Ser. B213: 299–363.

    Article  Google Scholar 

  • —. 1933. On some pteridospermous plants from the Mesozoic rocks of South Africa. Philos. Trans., Ser. B222: 193–265.

    Article  Google Scholar 

  • Thompson, W. P. 1918. Independent evolution of vessels in Gnetales and angiosperms. Bot. Gaz.65: 83–90.

    Article  Google Scholar 

  • Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pages 193–230in K. J. Niklas (ed.), Paleobotany, paleoecology and evolution. Vol. 2. Praeger, New York.

    Google Scholar 

  • Townrow, J. A. 1960 The Peltaspermaceae, a pteridosperm family of Permian and Triassic age. Palaeontology3: 333–361.

    Google Scholar 

  • — 1962. OnPteruchus a microsporophyll of the Corystospermaceae. Bull. Brit. Mus. (Nat. Hist.), Geol.6: 289–320.

    Google Scholar 

  • Upchurch, G. R. 1984. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard.71: 522–550.

    Article  Google Scholar 

  • — &P. R. Crane. 1985. Probable gnetalean megafossils from the Lower Cretaceous Potomac Group of Virginia. Amer. J. Bot.72: 903.

    Google Scholar 

  • Vakhrameev, V. A. 1970. Yurskie i rannemelovye flory. Pages 213–281in V. A. Vakhrameev, I. A. Dobruskina, Ye. D. Zaklinskaya & S. V. Meyen (eds.), Paleozoyskie i mezozoyskie flory Yevrazii i fitogeografiya etogo vremeni. Nauka, Moscow.

    Google Scholar 

  • Varma, Y. S. R. &C. G. K. Ramanujam. 1984. Palynology of some Upper Gondwana deposits of Palar basin, Tamil Nadu, India. Palaeontographica, Abt. B190: 37–86.

    Google Scholar 

  • Vishnu-Mittre. 1953. A male flower of the Pentoxyleae with remarks on the structure of the female cones of the group. Palaeobotanist2: 75–84.

    Google Scholar 

  • —. 1957. Studies on the fossil flora of Nipania (Rajmahal Series), India—Pentoxyleae. Palaeobotanist6: 31–46.

    Google Scholar 

  • Vrba, E. S. 1983. Macroevolutionary trends: New perspectives on the roles of adaptation and incidental effect. Science221: 387–389.

    Article  PubMed  Google Scholar 

  • — &N. Eldredge. 1984. Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology10: 146–171.

    Google Scholar 

  • Walker, J. W. 1976. Evolutionary significance of the exine in the pollen of primitive angiosperms. Pages 1112–1137in I. K. Ferguson & J. Muller (eds.), The evolutionary significance of the exine. Academic Press, London.

    Google Scholar 

  • Walton, J. 1953. The evolution of the ovule in the pteridosperms. Advancem. Sci.10: 223–230.

    Google Scholar 

  • Watrous, L. E. &Q. D. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool.30: 1–11.

    Article  Google Scholar 

  • Wettstein, R. R. von. 1907. Handbuch der systematischen Botanik, II. Band. Franz Deuticke, Leipzig, Wien.

    Google Scholar 

  • White, D. 1936. Some features of the early Permian flora of America. Rept. XVI Int. Geol. Congr. (Washington, 1933), vol. 1, 679–689.

    Google Scholar 

  • Wight, D. C. &C. B. Beck. 1984. Sieve cells in phloem of a Middle Devonian progymnosperm. Science225: 1469–1471.

    Article  PubMed  Google Scholar 

  • Wilde, M. H. 1944. A new interpretation of coniferous cones: I. Podocarpaceae (Podocarpus). Ann. Bot. (London)8: 1–41.

    Google Scholar 

  • Young, D. A. 1981. Are the angiosperms primitively vesselless? Syst. Bot.6: 313–330.

    Article  Google Scholar 

  • — &P. M. Richardson. 1982. A phylogenetic analysis of extant seed plants: The need to utilize homologous characters. Taxon31: 250–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, J.A., Donoghue, M.J. Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach. Bot. Rev 52, 321–431 (1986). https://doi.org/10.1007/BF02861082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861082

Keywords

Navigation