Skip to main content
Log in

Genetic and metabolic regulation in differentiating plant storage tissue cells

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusion

Resting plant storage organs, e.g., potato tubers, carrots or sugar beets usually exhibit a very low metabolic activity. Slicing into thin disks and incubation of these tissue fragments in a moist atmosphere, however, leads to a coordinated genetic and metabolic effort to adapt the exposed cells to their new environment. Nearly all reactions occurduring this struggle are dependent on genetic activity: slicing strikingly mimics well known hormone effects in mammalian systems and most certainly evokes an induction similar to that of the hormones (e.g., estrogen on uterine cells, Table VIII). Moreover, the cell controls the magnitude of induced reactions by way of its considerable inductive, repressive or modifying capabilities.

However, in sharp contrast to the widely studied hormone systems of the plant and animal kingdoms, plant storage tissue slices and their capabilities have been largely neglected until now or are not known at all. Nevertheless they provide an excellent example of genetic and metabolic regulation occurring side by side and easy-to-handle material for the study of the elementary processes at the gene level following derepression of previously repressed genes in multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdelkader, A. B., Mazliak, P., Catesson, A. M. (1969). Biogenése des lipides mitochondriaux au cours de la “survie” (aging) de disques de parenchyme de tubercule de pomme de terre. Phytochem.8: 1121–1133.

    Article  Google Scholar 

  • Allfrey, V. G. (1969).In: Biochemistry of cell division. C. C. Thomas, Springfield, Ill., 179.

    Google Scholar 

  • Allfrey, V. G., Faulkner, R., Mirsky, A. E. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci.51: 786–793.

    Article  PubMed  CAS  Google Scholar 

  • Attardi, G., Amaldi, F. (1970). Structure and synthesis of ribosomal RNA. Ann. Rev. Biochem.39: 183–226.

    Article  PubMed  CAS  Google Scholar 

  • Bekhor, I., Kung, G. M., Bonner, J. (1969). Sequence-specific interaction of DNA and chromosomal protein. J. Mol. Biol.39: 351–364.

    Article  PubMed  CAS  Google Scholar 

  • Bendall, D. S., Hill, R. (1956). Cytochrome components in the spadix ofArum maculatum. New Phytol.55: 206–212.

    Article  CAS  Google Scholar 

  • Black, M. K., Wedding, R. T. (1968). Effects of storage and aging on properties of phosphofructokinase from Jerusalem artichoke tubers. Plant Physiol.43: 2066–2069.

    PubMed  CAS  Google Scholar 

  • Bonner, J., English, J. (1937). Purification of traumatin, a plant wound hormone. Science86: 352–353.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, J., T’so, P. O. P. (1964). The nucleohistones. Eds. Holden-Day, Inc. San Francisco, London, Amsterdam.

    Google Scholar 

  • Britten, R. J., Davidson, E. H. (1969). Gene regulation for higher cells: A theory. Science165: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Burton, K. (1957). Free energy data of biological interest.In: Erg. Physiol. Biol. Chem. exp. Pharmakol.49: 275–285.

    Google Scholar 

  • Cherry, J. H. (1968). Regulation pf invertase in washed sugar beet tissue.In: Biochem. Physiol. Plant Growth Substances. Ed. Wightman and Setterfield, The Runge Press, Ottawa, 417–431.

    Google Scholar 

  • Click, R. E., Hackett, D. P. (1963). The role of protein and nucleic acid synthesis in the development of respiration in potato tuber slices. Proc. Natl. Acad. Sci.50: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Dounce, A. L., Ickowicz, R. (1969). A study of optimal conditions for separating protein fractions from isolated cell nuclei. Arch. Biochem. Biophys.131: 210–214.

    Article  PubMed  CAS  Google Scholar 

  • Duda, C. T., Cherry, J. H. (1971). Chromatin- and nuclei-directed ribonucleic acid synthesis in sugar beet root. Plant Physiol.47: 262–268.

    PubMed  CAS  Google Scholar 

  • Edelman, J., Bradshaw, M. J. (1969). Enzyme synthesis in higher plant tissue. A protein inhibitor of invertase synthesis secreted by tissue slices of Jerusalem artichoke. Planta84: 94–96.

    Article  Google Scholar 

  • Elgin, S. C. R., Froehner, S. C., Smart, J. E., Bonner, J. (1970). The biology and chemistry of chromosomal proteins.In: Advances in cell and molecular biology. Acad. Press, N. Y., 1–57.

    Google Scholar 

  • Ellis, R. J., MacDonald, I. R. (1967). Activation of protein synthesis by microsomes from aging beet disks. Plant Physiol.42: 1297–1302.

    PubMed  CAS  Google Scholar 

  • Ellis, R. J., MacDonald, I. R. (1968). Characterization of amino acid incorporation by subcellular fractions from sterile beet disks. Planta (Berl.)83: 248–256.

    CAS  Google Scholar 

  • English, J., Bonner, J., Haagen-Smit, A. J. (1939). Structure and synthesis of a plant wound hormone. Science90: 329.

    Article  PubMed  CAS  Google Scholar 

  • Fowke, L. C., Setterfield, G. (1968). Cytological responses in Jerusalem artichoke tuber slices during aging and subsequent auxin treatment.In: Biochem. Physiol. Plant Growth Subst., Ed. Wightman and Setterfield, The Runge Press, Ottawa, 581–602.

    Google Scholar 

  • Furlan, M., Jericijo, M. (1967). Protein catabolism in thymus nuclei. I. Hydrolysis of nucleoproteins by proteases present in calf-thymus nuclei. Biochem. Biophys. Acta147: 135–144.

    PubMed  CAS  Google Scholar 

  • Grant, J. K. (1969). Actions of steroid hormones at cellular and molecular levels.In: Essays in Biochemistry5: 1.

    PubMed  CAS  Google Scholar 

  • Haagen-Smit, A. J., Viglierchio, D. R. (1958). Investigations of plant wound hormones. Rec. Trav. Chim. Pays-Bas74: 1197–1206.

    Google Scholar 

  • Haberlandt, G. (1913). Zur Physiologie der Zellteilung. Sitzungsber. Kgl. Preuss. Akad. Wiss.1: 318–345.

    Google Scholar 

  • Haberlandt, G. (1921). Wundhormone als Erreger von Zellteilungen. Beitr. Allg. Bot.2: 1–53.

    Google Scholar 

  • Hamilton, T. H. (1968). Control by estrogen of genetic transcription and translation. Science161: 649–661.

    Article  PubMed  CAS  Google Scholar 

  • Hemberg, T. (1947). Studies of auxins and growth-inhibiting substances in the potato tuber and their significance with regard to its rest-period. Acta Horti Bergiani14: 133–220.

    CAS  Google Scholar 

  • Huang, R. C., Bonner, J. (1962). Histone a suppressor of chromosomal RNA synthesis. Proc. Natl. Acad. Sci.48: 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  • Imaseki, H., Uchiyama, M., Uritani, I. (1968). Effect of ethylene on the inductive increase in metabolic activities in sliced sweet potato roots. Agr. Biol. Chem.32: 387–389.

    CAS  Google Scholar 

  • Jacobson, B. S. (1970). The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the type of endogenous substrate in aging potato disks. Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Kahl, G., Lange, H., Rosenstock, G. (1969). Substrate levels, enzymatic activities and genetic regulation after derepression in plant storage tissues. Z. f. Naturforschung24b: 911–918.

    Google Scholar 

  • Kahl, G., Lange, H., Rosenstock, G. (1969). Regulation of glycolysis by the synthesis and degradation of enzymes. Z. f. naturforschung24b: 1544–1549.

    Google Scholar 

  • Kahl, G. (1971). Synthesis of rRNA, tRNA and other RNA-species concomitant with polyribosome formation in aging potato tuber slices. Z. f. Naturforschung26b: 1058–1064.

    Google Scholar 

  • Kahl, G. (1971). Activities of protein synthesis in aging potato tuber slices. Z. f. Naturforschung26b: 1064–1067.

    Google Scholar 

  • Kroeger, H. (1967). Proc. 7th Int. Congr. Biochem. Tokyo.

  • Kroeger, H. (1967). Mem. Soc. Endocrin.15: 55.

    Google Scholar 

  • Lange, H., Rosenstock, G. (1963). Physiologisch-anatomische Studien zum Problem der Wundheilung. II. Kausalanalytische Untersuchungen zur Theorie des Wundreizes. Beitr. Biol. Pflanzen39: 383–488.

    Google Scholar 

  • Lange, H., Rosenstock, G. (1965). Gibt es Wundhormone? Umschau in Wiss. Technik8: 244–248.

    CAS  Google Scholar 

  • Laquens, R. J. (1964). Effect of estrogen upon the fine structure of the uterine smooth muscle cell of the rat. Ultrastr. Res.10: 578–584.

    Article  Google Scholar 

  • Laties, G. G. (1959). Active transport of salt into plant tissue. Ann. Rev. Plant Physiol.10: 87–112.

    Article  CAS  Google Scholar 

  • Laties, G. G. (1964). The onset of tricarboxylic acid cycle activity with aging in potato slices. Plant Physiol.39: 654–663.

    PubMed  CAS  Google Scholar 

  • Laties, G. G. (1965). Inhibition of RNA and protein synthesis by chloral in potato slices. Plant Physiol.40: 1237–1241.

    Article  PubMed  CAS  Google Scholar 

  • Laties, G. G. (1967). Metabolic and physiological development in plant tissues. Austr. J. Sci.30: 193–203.

    CAS  Google Scholar 

  • Leaver, C. J., Key, J. L. (1967). Polyribosome formation and RNA synthesis during aging of carrot-root tissue. Proc. Natl. Acad. Sci.57: 1338–1344.

    Article  PubMed  CAS  Google Scholar 

  • Leaver, C. J., Key, J. L. (1970). Ribosomal RNA synthesis in plants. J. Mol. Biol.49: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Lezzi, M. (1966). Induktion eines Ecdyson-aktivierbaren Puff in isolierten Zellkernen von Chironomus durch KCL. Exptl. Cell Res.43: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Lezzi, M. (1967). Spezifische Aktivitätssteigerung eines Balbiani-Ringes durch Mg2+ in isolierten Zellkernen von Chironomus. Chromosoma21: 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Lezzi, M. (1967). Differential effects of sodium and potassium ions on the template activity of rat liver chromatin. Physiol. Chem. Physics1: 447–461.

    Google Scholar 

  • Marré, E. (1961). Phosphorylation in higher plants. Ann. Rev. Plant Physiol.12: 195–218.

    Article  Google Scholar 

  • Masuda, Y. (1966). Auxin-induced growth of tuber tissue of Jerusalem artichoke. III. Effect of Actinomycin D on auxin-induced expansion growth and RNA synthesis. Plant Cell Physiol.7: 573–581.

    CAS  Google Scholar 

  • Matthysse, A. G., Phillips, C. (1969). A protein intermediary in the interaction of a hormone with the genome. Proc. Natl. Acad. Sci.63: 897–903.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, G. C., Gorski, J., Aizawa, Y. (1961).In: Mechanism of action of steroid hormones. Pergamon Press, Oxford.

    Google Scholar 

  • Muto, S., Asahi, T., Uritani, I. (1969). Increase in the dehydrogenase activities of the pentose phosphate pathway in sweet potato root tissue after slicing. Agr. Biol. Chem.33: 176–189.

    CAS  Google Scholar 

  • Nicolette, J. A., Gorski, J. (1964). Effect of estradiol on glucose-U-C-14 metabolism in the rat uterus. Arch. Biochem. Biophys.107: 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Park, R., Epstein, S. (1961). Metabolic fractionation of C16 and C12 in plants. Plant Physiol.36: 133–138.

    PubMed  CAS  Google Scholar 

  • Payes, B., Laties, G. G. (1963). The inhibition of several tricarboxylic acid cycle enzymes by γ-hydroxy-α-ketoglutarate. Biochem. Biophys. Res. Comm.10: 460–466.

    Article  PubMed  CAS  Google Scholar 

  • Payes, B. (1966). The ontogeny of the tricarboxylic acid cycle in potato slices. Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Rappaport, L., Sachs, M. (1967). Wound-induced gibberellins. Nature214: 1149–1150.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon, G., Laties, G. G. (1969). Régulation de l’activité de l’isocitrate-déshydrogénase spécifique à NAD des mitochondries de tubercules de pomme de terre. Compt. Rend. Acad. Sci. Paris268: 1612–1615.

    Google Scholar 

  • Setterfield, G. (1963). Growth regulation in excised slices of Jerusalem artichoke tuber tissue. Symp. Soc. Exptl. Biol.17: 98–129.

    CAS  Google Scholar 

  • Siebert, G., Langendorf, H. (1970). Ionenhaushalt im Zellkern. Naturwiss.57: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Sponholz, R. (1969). Veränderungen von Nukleolus- und Nukleusgrössen sowie des Nukleinsäurespiegels in Fragmenten des Knollenparenchyms von Solanum tuberosum nach Derepression nach Verwundung. Ph.D. Thesis, University of Frankfurt, Germany.

    Google Scholar 

  • Stellwagen, R. H., Cole, R. D. (1969). Chromosomal proteins. Ann. Rev. Biochem.38: 951–990.

    Article  PubMed  CAS  Google Scholar 

  • Stone, B. P., Whitty, C. D., Cherry, J. H. (1970). Effect of ethionine on invertase development and methylation of ribonucleic acid. Plant Physiol.45: 636–638.

    PubMed  CAS  Google Scholar 

  • Tidwell, T., Allfrey, V. G., Mirsky, A. E. (1968). The methylation of histones during regeneration of the liver. J. Biol. Chem.243: 707–715.

    PubMed  CAS  Google Scholar 

  • Uritani, I., Asahi, T., Minamikawa, T., Hyodo, H., Oshima, K., Kojima, M. (1967). The relation of metabolic changes in infected plants to changes in enzymatic activity.In: The dynamic role of molecular constituents in plant-parasite interaction. Ed. Mirocha, C. J., Uritani, I., The American Phytopath. Soc. St. Paul, Minn., U.S.A. 342–356.

    Google Scholar 

  • Varner, J., Johri, M. M. (1968). Hormonal control of enzyme synthesis.In: Biochem. Physiol. Plant Growth Substances ed. by Wightman and Setterfield, The Runge Press, Ottawa, 793–814.

    Google Scholar 

  • Willemot, C., Stumpf, P. K. (1967). Fat metabolism in higher plants. XXXIV. Development of fatty acid synthetase as a function of protein synthesis in aging potato tuber slices. Plant Physiol.42: 391–397.

    PubMed  CAS  Google Scholar 

  • Zenk, M. H. (1970). Phytohormone und Genaktivität. Ber. Dtsch. Bot. Ges.83: 325–344.

    CAS  Google Scholar 

  • Zucker, M. (1968). Sequential induction of phenylalanine ammonia-lyase and a lyase-inactivating system in potato tuber disks. Plant Physiol.43: 365–374.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahl, G. Genetic and metabolic regulation in differentiating plant storage tissue cells. Bot. Rev 39, 274–299 (1973). https://doi.org/10.1007/BF02860120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860120

Keywords

Navigation