Skip to main content
Log in

Gnotobiotic culture of plants and related research

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

The techniques that have been used for several years to culture tissues and organs of plants have been expanded to the culture of whole plants, aseptically, throughout one or more life cycles. Use of plastic films and isolator chambers originally developed for germ-free animal research can be of advantage in developing model plant systems. Axenic plants offer possibilities of gaining greater insights into the physiology of plants growing in the absence of other organisms and of plants growing in association with one or more microorganisms. Reports on growth of the axenic plant compared to the non-axenic plant are contradictory. Examples of how a microorganism changes the physiology of the plant and how it affects root exudation are relatively few but indicate that more research is needed. Plant gnotobiology offers unique opportunities for further unraveling the complex interactions that occur in the dynamic plant-microorganism ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ayers, W. A. and R. H. Thornton. 1968. Exudation of amino acids by intact and damaged roots of wheat and peas. Plant Soil28: 193–207.

    Article  CAS  Google Scholar 

  • Baker, R. and D. J. Phillips. 1962. Obtaining pathogen-free stock by shoot tip cultures. In: Symposium on pathogen free stock. Phytopathology52: 1242–1244.

    Google Scholar 

  • Barber, D. A. 1968. Microorganisms and the inorganic nutrition of higher plants. Ann. Rev. Plant Physiol.19: 71–88.

    Article  CAS  Google Scholar 

  • Barber, D. A., J. Sanderson, and R. S. Russell. 1968. The influence of micro-organisms on the distribution of 32 P-labeled phosphate in roots. Nature217: 644.

    Article  PubMed  CAS  Google Scholar 

  • Barber, H. A. and T. C. Broyer. 1942. Notes on the influence of microorganisms on growth of squash plants in water culture with particular reference to manganese nutrition. Soil Sci.53: 467–477.

    Google Scholar 

  • Bowen, G. D. and A. D. Rovira. 1961. Effects of microorganisms on plant growth. I. Development of roots and root hairs in sand and agar. Plant Soil15: 166–188.

    Article  Google Scholar 

  • Broomfield, S. M. 1958. The properties of a biologically formed manganese oxide, its availability to oats and its solution by root washings. Plant Soil9: 325–337.

    Article  CAS  Google Scholar 

  • Clark, N. A. and E. M. Roller. 1931. The stimulation ofLemna major by organic matter under sterile and non-sterile conditions. Soil Sci.31:299–308.

    Article  CAS  Google Scholar 

  • Couch, H. B. and J. R. Bloom. 1960. Influence of soil moisture stresses on the development of the root-knot nematode. Phytopathology50: 319–321.

    Google Scholar 

  • Danielson, R. M. and C. B. Davey. 1969. Microbial recolonization of a fumigated nursery soil. For. Sci.15: 368–380.

    Google Scholar 

  • Evanari, M. 1961. Chemical influence of other plants (alletopathy). Encyclopedia of Plant Physiol. Springer-Verlaug.16: 691–739.

    Google Scholar 

  • Foy, C. L., W. Hurtt, and M. G. Hale. 1971. Root exudation of plant-growth regulators.In: Biochemical Interactions among Plants. National Acad. Sci. Washington, D.C. pp. 75–85.

    Google Scholar 

  • Geretsen, F. C. 1948. The influence of microorganisms on the phosphate intake by the plant. Plant Soil1: 51–81.

    Article  Google Scholar 

  • Griffin, G. J. 1969.Fusarium oxysporum andAspergillus flavus spore germination in the rhizosphere of peanut. Phytopathology59: 1214–1218.

    PubMed  CAS  Google Scholar 

  • Hale, M. G. 1969. Loss of organic compounds from roots. I. Cultural conditions for axenic growth of peanut,Arachis hypogaea, L. Plant and Soil31: 463–472.

    Article  CAS  Google Scholar 

  • Hale, M. G., C. L. Foy and F. J. Shay. 1971. Factors affecting root exudation. Advan. Agron.23: 89–109.

    Article  CAS  Google Scholar 

  • Hameed, K. and H. B. Couch. 1971. Effects ofPenicillium simplicissimum on growth, chemical composition, and root exudation of axenically grown marigolds. Phytopathology62: 669 (Abstr.)

    Google Scholar 

  • Hameed, K. M. 1971. Influence ofPenicillium simplicissimum (Oud) Thom andPenicillium citrinum Thorn on growth, chemical composition, and root exudation of axenic marigold. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg.

    Google Scholar 

  • Head, G. C. 1964. A study of exudation from root hairs of apple roots by time-lapse cine-photo-micrography. Ann. Bot. (London).28: 495–498.

    Google Scholar 

  • Hiatt, A. J. and R. H. Lowe. 1967. Loss of organic acids, amino acids, K and Cl from barley roots treated anaerobically and with metabolic inhibitors. Plant Physiol.42: 1731–1736.

    PubMed  CAS  Google Scholar 

  • Ivanov, V. P., G. A. Yokobsen, and B. B. Fomenko. 1964. Effect of varying soil moisture on the exchange of root excretions. Fiziol. rastenii11: 631–637.

    Google Scholar 

  • English Transl. Soviet Plant Physiol.11: 538–545. 1964.

    Google Scholar 

  • Knudson, L. 1920. The secretion of invertase by plant roots. Amer. J. Bot.7: 371–379.

    Article  CAS  Google Scholar 

  • Knudson, L. 1930. Flower production by orchid grown non-symbiotically. Bot. Gaz.89: 192–199.

    Article  Google Scholar 

  • Lai, M., A. K. Weinhold, and J. G. Hancock. 1966. Cell permeability increase in mung bean during infection byRhizoctonia solani. Phytopathology56: 886 (Abstr.)

    Google Scholar 

  • Laibach, F. 1943.Arabidopsis thaliana (L.) Heynh. Als Objckt fur genetsche und entivichlungsphysiologsche Untersuchungen. Bot. Arch.44: 439–455.

    Google Scholar 

  • Langridge, J. 1957. The aseptic culture ofArabiodopsis thaliana (L.) Heynh. Australian J. Biol. Sci.10: 243–252.

    CAS  Google Scholar 

  • Lindsey, D. L. and R. Baker. 1967. Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology57: 1262–1263.

    Google Scholar 

  • Lindsey, D. L. 1967. Growth of beans, tomatoes and corn under gnotobiotic conditions. Phytopathology57: 960–964.

    Google Scholar 

  • Loo, Shih-wei. 1946. Preliminary experiment on the cultivation ofBaeria chrysostoma under sterile conditions. Amer. J. Bot.33: 382–389.

    Article  CAS  Google Scholar 

  • Luckey, T. D. 1963. Germfree life and gnotobiology. Academic Press, N.Y., 512 p.

    Google Scholar 

  • Macura, J. and V. Vancura. 1965. Plant-microbes relationships. Czech. Acad. Sci., Prague.

    Google Scholar 

  • McDougall, Barbara M. and A. D. Rovira. 1965. Carbon 14-labeled photosynthate in wheat root exudates. Nature207: 1104–1105.

    Article  CAS  Google Scholar 

  • McDougall, Barbara M. 1968. The exudation of 14C-labeled substances from roots of wheat seedlings. Trans. 9th Internat. Congr. Soil Sci. Soc., Adelaide, Australia3: 647–655.

    CAS  Google Scholar 

  • McDougall, Barbara M. and A. D. Rovira. 1970. Sites of exudation of14C-labeled compounds from wheat roots. New Phytol.69: 999–1003.

    Article  Google Scholar 

  • McDougall, Barbara M. 1970. Movement of14C-photosynthate into the roots of wheat seedlings and exudation of14C from intact roots. New Phytol.69: 37–46.

    Article  CAS  Google Scholar 

  • Mickelson, O. 1962. Nutrition-germfree animal research. Ann. Rev. Biochem31: 515–548.

    Article  Google Scholar 

  • Miller, P. W. 1947. Fungi associated with root lesions of the strawberry in Oregon. Plant Dis. Reptr.31: 90–99.

    Google Scholar 

  • Miller, R. H. and E. L. Schmidt. 1965. Uptake and assimilation of amino acids supplied to the sterile soil: root environment of the bean plant (Phaseolus vulgaris). Soil Sci.100: 323–330.

    Article  CAS  Google Scholar 

  • Mollenhauer, H. H. 1967. A comparison of root cap cells of ephiphytic, terrestrial, and aquatic plants. Amer. J. Bot.54: 1249–1259.

    Article  Google Scholar 

  • Moore, L. D., and W. H. Wills. 1967. Calcium nutrition in relation to black shank disease of tobacco. Pl. Dis. Reptr.51: 641–644.

    Google Scholar 

  • Moré, D. J., D. D. Jones, and H. H. Mollenhauer. 1967. Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea Mays. I. Kinetics and secretory pathway. Planta74: 286–301.

    Article  Google Scholar 

  • Norman, A. G. 1960. Microbial products affecting root development. Trans. 7th Congr. Int. Soil Sci. Soc., Wisc.2: 531–530.

    Google Scholar 

  • Pollard, M. 1964. Germfree animals and biological research. Sci.145: 247–251.

    Article  CAS  Google Scholar 

  • Pringsheim, E. G. and O. Pringsheim. 1962. Axenic culture ofUtricularia. Amer. J. Bot.49: 898–901.

    Article  Google Scholar 

  • Ramchandra-Reddy, T. K. 1968. Plant treatment in relation to the rhizosphere effect. III. Foliar application of certain trace elements and metallic chelates in relation to rhizosphere microflora of rice (Oryza sativa L.). Plant Soil29: 114–118.

    Article  Google Scholar 

  • Reuzer, H. W. 1962. Axenic techniques in the determination of root functions and the inter-relationships of microorganisms and plant roots. Soil Sci.93: 56–61.

    Article  Google Scholar 

  • Rogers, M. R. 1957. Some effects of microorganisms on plant roots and their distribution on the roots. Master’s thesis, Perdue Univ., Lafayette, Ind. 36 pp.

    Google Scholar 

  • Rovira, A. D. 1969. Plant root exudates. Bot. Rev.35: 35–57.

    CAS  Google Scholar 

  • Schroth, M. N. and D. C. Hildebrand. 1964. Influence of plant exudates on root-infecting fungi. Ann. Rev. Phytopathology2: 101–132.

    Article  Google Scholar 

  • Slankis, V., V. C. Runeckles and G. Krotkov. 1964. Metabolites liberated by roots of white pine. Physiol. Plantarum.17: 301–313.

    Article  CAS  Google Scholar 

  • Steward, F. C., M. O. Mapes, A. E. Kent and R. D. Holsten. 1964. Growth and development of cultured plant cells. Science43: 20–27.

    Article  Google Scholar 

  • Street, H. E. 1969. Growth in organized and unorganized systems.In: F. C. Steward (Ed.) Plant Physiology, a treatise. VB. Analysis of growth: The response of cells and tissues in culture. Academic Press, New York. Chapter 6, pp. 3–224.

    Google Scholar 

  • Stotzky, G., W. Culbreth, and L. B. Mish. 1962. Apparatus for growing plants with aseptic roots for collection of root exudates and CO2. Plant Physiol.37(3): 332–348.

    PubMed  CAS  Google Scholar 

  • Subba-Rao, N. S. and K. S. B. Sarma. 1968. Pectin methyl esterase activity of root exudates of legumes in relation to rhizobia. Plant Soil28: 407–411.

    Article  CAS  Google Scholar 

  • Swaby, R. J. 1942. Stimulation of plant growth by organic matter. J. Australian Inst. Agric. Res.8: 156–163.

    CAS  Google Scholar 

  • Szember, A. 1960. Influence on plant growth of the breakdown of organic phosphorus compounds by microorganisms. Plant Soil13: 147–158.

    Article  CAS  Google Scholar 

  • Trexler, P. C. 1959. The use of plastics in the design of isolator systems. Ann. N. Y. Acad. Sci.78: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Weite, E. and G. Trolldenier. 1963. Einfluss von Mikrofloren verschliedener Boden und von Bakterien-reinkulturen auf das Pflanzenwachstum. Arch. Mikrobiol.47: 42–56.

    Article  Google Scholar 

  • Wetzel, R. G. 1969. Excretion of dissolved organic compounds by aquatic macrophytes. Bioscience19: 539–540.

    Article  CAS  Google Scholar 

  • Wheeler, H. and H. S. Black. 1962. Changes in permeability induced by victorin. Science137: 983–984.

    Article  PubMed  CAS  Google Scholar 

  • White, P. R. 1943. Germ-free plants and plant parts as materials for physiological and pathological studies. pp. 188–204.In: J. A. Reniers, (Ed.) Micrurgical and germ-free techniques. Charles C. Thomas, Springfield, Ill.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, M.G., Lindsey, D.L. & Hameed, K.M. Gnotobiotic culture of plants and related research. Bot. Rev 39, 261–273 (1973). https://doi.org/10.1007/BF02860119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860119

Keywords

Navigation