Skip to main content

A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium

  • Protocol
  • First Online:
Arbuscular Mycorrhizal Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2146))

Abstract

An in vivo whole-plant bi-dimensional experimental system has been devised and tested with different host plants, in order to obtain extraradical mycelium (ERM) produced by different arbuscular mycorrhizal fungi (AMF). In this system, a host plant germling is inoculated with AMF to establish mycorrhizal symbiosis, and, after colonization, newly formed extraradical hyphae and spores are removed. Then the mycorrhizal root system is wrapped in a nylon net and placed between membranes in a Petri dish, allowing ERM to grow on the membrane surface. Such extraradical hyphae may be used for in situ morphometric analyses or collected for molecular or biochemical assays: in the latter case, the plant with its root sandwich may be reassembled to renew mycelium production. In this experimental system, which was tested with diverse host plant species and lines, values of explored membrane surface areas and densities of ERM showed wide ranges of variation, and its length ranged from 9.7 ± 2.0 to 48.8 ± 9.9 m per plant, depending on host and AMF identity. Across the different plant-AMF combinations tested, the whole-plant system produced 2.0 ± 0.6 to 5.3 ± 0.3 mg of ERM fresh biomass per plant per harvest. This experimental system can be used for a wide range of AMF and host plants species, either establishing arbuscular mycorrhizas or other mycorrhizal interactions. ERM produced and collected in the whole-plant system is suitable for morphological, physiological, and molecular analyses, facilitating studies on the different aspects of mycorrhizal symbiotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  2. Avio L, Turrini A, Giovannetti M, Sbrana C (2018) Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front Plant Sc 9:1089

    Article  Google Scholar 

  3. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  4. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  5. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297

    Article  CAS  Google Scholar 

  6. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  Google Scholar 

  7. Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops–a meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  8. Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:4686

    Article  Google Scholar 

  9. Pepe A, Giovannetti M, Sbrana C (2018) Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci Rep 8:10235

    Article  Google Scholar 

  10. Giovannetti M, Avio L, Sbrana C (2015) Functional significance of anastomosis in arbuscular mycorrhizal networks. In: Horton TR (ed) Mycorrhizal networks. Springer, Dordrecht, pp 41–67

    Chapter  Google Scholar 

  11. López-Pedrosa A, Gonzalez-Guerrero M, Valderas A et al (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  Google Scholar 

  12. Pérez-Tienda J, Testillano PS, Balestrini R et al (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  Google Scholar 

  13. Calabrese S, Pérez-Tienda J, Ellerbeck M et al (2016) GintAMT3-a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis. Front Plant Sci 7:679

    Article  Google Scholar 

  14. González-Guerrero M, Azcón-Aguilar C, Mooney M et al (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  Google Scholar 

  15. Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547

    Article  Google Scholar 

  16. Ferrol N, Azcón-Aguilar C, Pérez-Tienda J (2018) Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: an overview on the mechanisms involved. Plant Sci 280:441–447

    Article  Google Scholar 

  17. Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu DG, Fortin A (eds) Vitro culture of mycorrhizas. Soil biology series, vol 4. Springer, Berlin, Heidelberg, New York, pp 111–138

    Chapter  Google Scholar 

  18. Pepe A, Sbrana C, Ferrol N, Giovannetti M (2017) An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza 27:659–668

    Article  CAS  Google Scholar 

  19. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of belowground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  20. de la Providencia IE, de Souza FA, Fernandez F et al (2005) Arbuscular mycorrhizal fungi exhibit distinct pattern of anastomoses formation and hyphal healing mechanism between different phylogenic groups. New Phytol 165:261–271

    Article  Google Scholar 

  21. Pepe A, Giovannetti M, Sbrana C (2016) Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Mycorrhiza 26:325–332

    Article  CAS  Google Scholar 

  22. Cárdenas-Flores A, Cranenbrouck S, Draye X et al (2011) The sterol biosynthesis inhibitor fenhexamid impacts the vegetative compatibility of Glomus clarum. Mycorrhiza 21:443–449

    Article  Google Scholar 

  23. Purin S, Morton JB (2013) Anastomosis behaviour differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus. Mycologia 12:589–602

    Article  Google Scholar 

  24. Barreto de Novais C, Pepe A, Siqueira JO, Giovannetti M, Sbrana C (2017) Compatibility and incompatibility in hyphal anastomosis of arbuscular mycorrhizal fungi. Sci Agric 74:411–416

    Article  Google Scholar 

  25. de Souza FA, Declerck S (2017) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012

    Google Scholar 

  26. Ezawa T, Saito M, Yoshida T (1995) Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176:57–63

    Article  CAS  Google Scholar 

  27. Besserer A, Puech-Pagès V, Kiefer P et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  Google Scholar 

  28. Sbrana C, Fortuna P, Giovannetti M (2011) Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia 103:307–316

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the University of Pisa (Fondi di Ateneo) and of CNR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Giovannetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sbrana, C., Pepe, A., Ferrol, N., Giovannetti, M. (2020). A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium. In: Ferrol, N., Lanfranco, L. (eds) Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, vol 2146. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0603-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0603-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0602-5

  • Online ISBN: 978-1-0716-0603-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics