Skip to main content
Log in

Environmental influences on CO2 uptake by agaves, cam plants with high productivities

Influencias Ambientales Sobre la Absorción de CO2 en Agaves, Plantas MAC con Alta Productividad

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Agaves have long been utilized for their leaf fiber and for beverage production. As first reported in 1968 for Agave americana, they are Crassulacean Acid Metabolism (CAM) plants, for which stomatal opening and CO2 uptake occur primarily at night when the lower temperatures greatly reduce water loss. More recently, the influences of rainfall, temperature, and photosynthetically active radiation on CO2 uptake by agaves have been determined and incorporated into an Environmental Productivity Index (EPI). Nutrient effects on CO2 uptake and growth can be quantified by a Nutrient Index, which multiplies EPI to account for soil element effects. New growth data forAgave victoriae-reginae are consistent with the Nutrient Index, except that high soil potassium levels inhibited dry weight increases and sodium was somewhat more inhibitory than expected. Productivities of agaves are high, the 25 tons dry weight hectare-1 yr-1 achievable byAgave mapisaga, A. salmiana, and A. tequilana exceeding the productivity of most annual agricultural crops. Often interest is focused on a specific harvestable plant part, such as the stems ofA. tequilana, which are harvested for tequila production. These stems have threefold higher levels of nonstructural carbohydrates such as sugars and polysaccharides than do the leaves; levels of such carbohydrates tend to be higher at times of the year with higher EPI, new data that can affect traditional harvesting practices. In conclusion, because of CAM, agaves can have high productivities in regions of moderate annual rainfall, and because of EPI, such productivity can be predicted, which augurs well for the increased future cultivation of agaves.

Résumé

Los agaves han sido aprovechados, desde hace tiempo, en la obtención de fibras y en la producción de bebidas alcohólicas. Estas plantas presentan el Metabolismo Acido de las Crasuláceas (MAC), citado por primera vez en 1968 paraAgave americana, por lo que la apertura estomática y la absorción de CO2 ocurren principalmente por la noche, cuando las bajas temperaturas reducen apreciablemente la pêrdida de agua. Recientemente, los efectos de la precipitación, la temperatura y la radiación fotosintéticamente activa sobre la absorción de CO2 en los agaves, se determinaron y incorporaron en el llamado Indice de Productividad Ambiental (IPA). A su vez, los efectos de los niveles de nutrientes en el suelo sobre la absorción de CO2 y el crecimiento, pueden ser cuantificados por un Indice Nutricional, que incrementa el poder del IPA. Datos recientes de crecimiento paraAgave victoriae-reginae fueron apoyados por el Indice Nutricional, a excepcion de los altos niveles de potasio en el suelo, que inhibieren el aumento en peso seco, y en el caso del sodio, cuyo efecto inhibitorio fue mayor del esperado. La productividad de los agaves es muy alta: las 25 tons ha-1 año-1 alcanzadas porA. mapisaga, A. salmiana yA. tequilana exceden la de la mayoría de los cultives agrícolas anuales. Partes cosechables de estas plantas, como los tallos de A. tequilana empleados en la producción de tequila, han frecuentemente suscitado interés. Estos tallos tienes niveles tres veces mas altos de carbohidratos no estructurales, como los azúcares y polisacáridos, que lo que producen sus hojas. Además, los niveles de taies carbohidratos tienden a ser mas altos en êpocas del año con mayor IPA, lo cual podria afectar las prácticas de cosecha tradicionales. En conclusión, estas plantas pueden tener altas productividades en regiones de precipitación anual moderada, y como con el uso del IPA esta productividad se puede predecir, esto favoreceria un futuro incremento en las áreas cultivadas de agaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Biancas, A., L. Alpizar, G. Larious, S. Saval, and C. Huitron. 1982. Conversion of henequen pulp to microbial biomass by submerged fermentation. Biotech. Bioeng. Symp. 12:171–175.

    Google Scholar 

  • Bolio, J. A. 1914. Manual practico del henequen su cultivo y expotacion. Empressa Editorial Católica, Mérida, Yucatán.

    Google Scholar 

  • Callen, E. O. 1965. Food habits of some pre-Colombian Mexican. Indians. Econ. Bot. 19:335–343.

    Google Scholar 

  • Denison, R. F., and P. S. Nobel. 1988. Growth ofAgave deserti without current photosynthesis. Photosynthetica 22:51–57.

    Google Scholar 

  • Ehrler, W. L. 1969. Daytime stomatal closure inAgave americana as related to enhanced water-use efficiency. Pages 239–247in C. C. Hoff and M. L. Riedsei, ed., Physiological systems in semiarid environments. University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Evans, L. T., ed. 1975. Crop physiology: some case histories. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fischer, R. A., and N. C. Turner. 1978. Plant productivity in arid and semi-arid zones. Annual Rev. Pl. Physiol. 29:277–317.

    Article  CAS  Google Scholar 

  • Garcia-Moya, E., and P. S. Nobel. 1990. Leaf unfolding rates and response to cuticle damaging for pulque agaves in Mexico. Desert Pl. 10:55–57.

    Google Scholar 

  • Gentry, H. S. 1982. Agaves of continental North America. University of Arizona Press, Tucson.

    Google Scholar 

  • Goncalves de Lima, O. 1956. Maguey y el pulque en los códices mexicanos. Fondo de Cultura Economica, Mexico City.

    Google Scholar 

  • Guerrero G., R. 1980. El pulque. Instituto Nacional de Antropología y Historia, Mexico City.

    Google Scholar 

  • Herz, J. E. 1985. Modificatión y recuperación de esteroides del henequén. Pages 169–174in C. Cruz, L. del Castillo, M. Robert, and R. N. Ondarza, ed., Biología y aprovechamiento integral del henequén y otros agaves. Centro de Investigación Científica de Yucatán, Mérida, Yucatán.

    Google Scholar 

  • Jarvis, P. G., and J. W. Leverenz. 1983. Productivity of temperate, deciduous and evergreen forests. Pages 233–280in O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, ed., Encyclopedia of plant physiology, new series, Vol.12D. Springer-Verlag, Berlin.

    Google Scholar 

  • Kluge, M., and I. P. Ting. 1978. Crassulacean acid metabolism: analysis of an ecological adaptation. Ecological Studies Series, Vol. 30. Springer-Verlag, Berlin.

    Google Scholar 

  • Kristen, U. 1969. Untersuchungen über den Zusammenhang zwischen dem CO2-Gaswechsel und der Luftwegigkeit an den CAM-SukkulentenBryophyllum daigremontianum Berg. undAgave americana L. Flora, Abt. A, Physiol. Biochem. 160:127–138.

    Google Scholar 

  • Leith, H., and R. H. Whittaker, ed. 1975. Primary productivity in the biosphere. Ecological Studies Series, Vol. 14. Springer-Verlag, New York.

    Google Scholar 

  • Lock, G. W. 1962. Sisal: twenty-five years’ sisal research. Longmans, London.

    Google Scholar 

  • Loomis, R.S. 1983. Productivity of agricultural systems. Pages 151–172in O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, ed., Encyclopedia of plant physiology, new series, Vol. 12D. Springer-Verlag, Berlin.

    Google Scholar 

  • —, W. A. Williams, and A. E. Hall. 1971. Agricultural productivity. Annual Rev. Pl. Physiol. 22:431–468.

    Article  Google Scholar 

  • Martin del Campo, R. 1938. El pulque en al México precortesiano. Anal. Inst. Biol. 9:5–23.

    Google Scholar 

  • Monteith, J. L. 1977. Climate and the efficiency of crop production in Britain. Phil. Trans., Ser. B, 281:277–294.

    Article  Google Scholar 

  • Neales, T. F., A. A. Patterson, and V. J. Hartney. 1968. Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature 219:469–472.

    Article  Google Scholar 

  • Nobel, P. S. 1984. Productivity ofAgave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia 64:1–7.

    Article  Google Scholar 

  • — 1985. PAR, water, and temperature limitations on the productivity of cultivatedAgave fourcroydes (henequen). J. Appl. Ecol. 22:157–173.

    Article  Google Scholar 

  • — 1988. Environmental biology of agaves and cacti. Cambridge University Press, New York.

    Google Scholar 

  • — 1989. A nutrient index quantifying productivity of agaves and cacti. J. Appl. Ecol. 26:635–645.

    Article  Google Scholar 

  • —, and V. Garcia de Cortazar. 1987. Interception of photosynthetically active radiation and predicted productivity forAgave rosettes. Photosynthetica 21:261–272.

    Google Scholar 

  • —, and W. L Berry. 1985. Element responses of agaves. Amer. J. Bot. 72:686–694.

    Article  CAS  Google Scholar 

  • —, and T. L. Hartsock. 1986. Temperature, water, and PAR influences on predicted and measured productivity ofAgave deserti at various elevations. Oecologia 68:181–185.

    Article  Google Scholar 

  • —, and S. E. Meyer. 1985. Field productivity of a CAM plant,Agave salmiana, estimated using daily acidity changes under various environmental conditions. Physiol. PL 65:397–404.

    Article  CAS  Google Scholar 

  • —, and E. Quero. 1986. Environmental productivity indices for a Chihuahuan Desert CAM plant,Agave lechuguilla. Ecology 67:1–11.

    Article  Google Scholar 

  • —, and A. G. Valenzuela. 1987. Environmental responses and productivity of the CAM plant,Agave tequilana. Agric. Forest Meterol. 39:319–334.

    Article  Google Scholar 

  • Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annual Rev. Ecol. Syst. 4:25–51.

    Article  Google Scholar 

  • Odum, E. P. 1971. Fundamentals of ecology. 3rd ed. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Poloniato, A. 1986. El pulque, vino de la tierra. Revista Geogr. Universal 21:378–392.

    Google Scholar 

  • Robert, M. L., J. L. Herrera, F. Contreras, and K. N. Scorer. 1987. In vitro propagation ofAgave fourcroydes Lem. (henequen). Pl. Cell Tissue Organ Cult. 8:37–48.

    Article  CAS  Google Scholar 

  • Sheldon, S. 1980. Ethnobotany ofAgave lechuguilla andYucca carnerosana in Mexico’s Zona Ixtlera. Econ. Bot. 34:376–390.

    Google Scholar 

  • Smith, D. 1981. Removing and analyzing total nonstructural carbohydrates from plant tissues. Wisconsin Agric. Exp. Sta. Bull. 2107:1–11.

    Google Scholar 

  • Spiro, R. G. 1966. Anthrone assay for neutral sugars. Meth. Enzmol. 8:3–26.

    Article  CAS  Google Scholar 

  • Tello-Balderas, J. J., and E. Garcia-Moya. 1985. The mezcal industry in the Altiplano Potosino- Zacatecano of north-central Mexico. Desert PL 7:81–87.

    Google Scholar 

  • Tissue, D. T., and P. S. Nobel. 1988. Parent-ramet connections inAgave deserti: influences of carbohydrates on growth. Oecologia 75:266–271.

    Article  Google Scholar 

  • -, and P. S. Nobel. 1989. Carbon relations of flowering in a semelparous clonal desert perennial. Ecology, in press.

  • Valenzuela, A. G. 1985. The tequila industry in Jalisco, Mexico. Desert Pl. 7:65–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobel, P.S. Environmental influences on CO2 uptake by agaves, cam plants with high productivities. Econ Bot 44, 488–502 (1990). https://doi.org/10.1007/BF02859785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859785

Keywords

Navigation