Skip to main content
Log in

Increase in Na+−Ca2+ exchange activity in sarcolemma isolated from mesenteric arteries of spontaneously hypertensive rats

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Na+−Ca2+ exchange process in sarcolemmal vesicles isolated from mesenteric arteries of Wistar-Kyoto normotensive(WKY) and spontaneously hypertensive rats(SHR) was investigated. The sarcolemmal fractions isolated after homogenization and sucrose density gradient centrifugation were enriched with 5′-nucleotidase and ouabain sensitive, K+-dependent phosphatase activities. When the vesicles were loaded with Na+, a time dependent Ca2+ uptake was observed. However, very little Ca2+ uptake was observed when the vesicles were loaded with K+, or Ca2+ uptake of the Na+-loaded vesicles was carried out in high sodium medium so that there was no sodium gradient. When the vesicles loaded with Ca2+ by Na+−Ca2+ exchange were diluted into potassium medium containing EGTA, Ca2+ was rapidly released from the vesicles. Na+-dependent Ca2+ uptake was increased in SHR compared to WKY, but passive efflux of preaccumulated Ca2+ from the vesicles was decreased in SHR. The data indicate that the membrane vesicles of rat mesenteric arteries exhibit Na+−Ca2+ exchange activity. It is also suggested that changes of this process in vascular smooth muscle cell membrane of SHR may be involved in higher intracellular Ca2+ concentration and higher basal tone in SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Dahl, L.K., and Love, R.A.: Evidence for relationship between sodium intake and essential human hypertension.Arch. Intern. Med. 94, 525 (1954).

    CAS  Google Scholar 

  2. Kohlstadt, K.G., Moser, M., Francis, T. Jr., Neal, J., and Moore, F.: Panel discussion on genetic and environmental factors in human hypertension.Circulation 17, 728 (1958).

    Google Scholar 

  3. Dahl, L.K., Heinz, M., and Tassinar, L.: Effects of chronic excess salt ingestion: Evidence that genetic factors play an important role in susceptibility to experimental hypertension.J. Exp. Med. 115, 1173 (1962).

    Article  PubMed  CAS  Google Scholar 

  4. Blaustein, M.P.: Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis.Am. J. Physiol. 232, 165 (1977).

    Google Scholar 

  5. Tosteson, D.C., Adragna, N., Bize, I., Solomon, H., and Canessa, M.: Membranes, ions and hypertension.Clin. Sci. 5s (1981).

  6. Garay, R.P., and Meyer, P.: A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertension patients.Lancet 1, 349 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. Garay, R.P., Dagher, G., Pernollet, M.G.: Inherited defect in a Na+−K+ co-transport system in erythrocytes from essential hypertensive patients.Nature(London) 284, 281 (1980).

    CAS  Google Scholar 

  8. Dagher, G., and Garay, R.P.: A Na−K co-transport assay for essential hypertension.Canadian J. Biochem. 58, 1690 (1980).

    Google Scholar 

  9. Haddy, F.J.: Local control of vascular resistance as related to hypertension.Arch. Intern. Med. 133, 916 (1974).

    Google Scholar 

  10. Overbeck, H.W.: Vascular responses to cations, osmolality, and angiotensin in renal hypertensive dogs.Am. J. Physiol. 223, 1358 (1972).

    PubMed  CAS  Google Scholar 

  11. Massry, S.G., Corburn, J.W., Chapman, L.W., and Kleeman, C.: The effect of longterm deoxycorticosterone acetate administration on the renal excretion of calcium and magnesium.J. Lab. Clin. 71, 212 (1968).

    CAS  Google Scholar 

  12. McCarron, D.A., Yung, N.N., Ugoretz, B.R., and Krutzik, S.: Disturbances of calcium metabolism in spontaneously hypertensive rat.Hypertension 3, Suppl. 1, 162 (1981).

    CAS  Google Scholar 

  13. Toraason, M.A., and Wright, G.L.: Transport of calcium by duodenum of spontaneously hypertensive rats.Am. J. Physiol. 241, G344 (1981).

    PubMed  CAS  Google Scholar 

  14. Wright, G.L., and Rankin, G.O.: Concentrations of ionic and total calcium in plasma of four models of hypertension.Am. J. Physiol. 243, H365 (1982).

    PubMed  CAS  Google Scholar 

  15. Bianchi, C.P., and Shanes, A.M.: Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture.J. Gen. Physiol. 42, 805 (1959).

    Article  Google Scholar 

  16. Curtis, B.A.: Ca2+ fluxes in single twitch muscle fibers.J. Gen. Physiol. 50, 255 (1966).

    Article  PubMed  CAS  Google Scholar 

  17. Filo, R.S., Bohr, D.F., and Rüegg, J.C.: Glycerinated skeletal and smooth muscle calcium and magnesium dependence.Science 147, 1581 (1972).

    Article  Google Scholar 

  18. Hendrickx, H., and Casteels, R.: Electrogenic sodium pump in arterial smooth muscle cells.Pfluger Arch. 346, 299 (1974).

    Article  CAS  Google Scholar 

  19. Greenberg, S., and Bohr, D.F.: Venous smooth muscle in hypertension Enhanced contractility of portal veins from spontaneously hypertensive rats.Circ. Res. 36, 37, Suppl.1, I 208 (1975).

    PubMed  CAS  Google Scholar 

  20. Field, F.P., Janis, R.A., and Triggle, D.J.: Aortic reactivity of rats with genetic and experimental renal hypertension.Can. J. Physiol. Pharmacol. 50, 1072 (1972).

    PubMed  CAS  Google Scholar 

  21. Pernollet, M.G., Devynck, M.A., and Meyer, P.: Abnormal calcium handling by isolated cardiac plasma membrane from spontaneously hypertensive rats.Clin. Sci. 61, 45s (1981).

    Google Scholar 

  22. Overbeck, H.W.: The sodium pump in cardiovascular muscle in hypertension: whose hypothesis?Clin. Exper. Hypertension 1, 551 (1972).

    Article  Google Scholar 

  23. Overbeck, H.W., Pammani, M.B., Akera, T., Brody, T.M., and Haddy, F.J.: Depressed function of a ouabain-sensitive sodium-potassium pump in blood vessels from renal hypertensive dogs.Circ. Res. 28 (suppl II), II-48 (1976).

    Google Scholar 

  24. Pamnani, M.B., Clough, D.L., and Haddy, F.J.: Altered activity of the sodium potassium pump in arteries of rats with steroid hypertension.Clin. Sci. Molec. Med. 55, 41s (1978).

    Google Scholar 

  25. Clough, D.L., Pamnani, M.B., Overbeck, H.W., and Haddy, F.J.: Decreased Na, K-ATPase in right ventricular myocardium of rats with one-kidney Goldblatt hypertension.Physiologist 20, 18 (1977).

    Google Scholar 

  26. Lee, S.W., Schwartz, A., Adams, R.J., Yamori, Y., Whitmer, K., Lane, L.K., and Wallick, E.T.: Decrease in Na, K-ATPase activity and [3H]ouabain binding sites in sarcolemma prepared from hearts of spontaneously hypertensive rats.Hypertension 5, 682 (1983).

    PubMed  CAS  Google Scholar 

  27. Adams, R.J., and Schwartz, A.: Comparative mechanism for contraction of cardiac and skeletal muscle.Chest 78(suppl), 123 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. Friedman, M., and Freed, S.C.: Microphonic manometer for indirect determination of systolic blood pressure in the rat.Proc. Soc. Exp. Biol. Med. 70, 670 (1949).

    PubMed  CAS  Google Scholar 

  29. Lowry, O.H., Rosebrough, H.J., Farr, A.L., and Randall, R.J.: Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  30. Song, C.S., and Bodansky, O.: Subcellular localization and properties of 5′-nucleotidase in rat liver.J. Biol. Chem. 242, 694 (1967).

    PubMed  CAS  Google Scholar 

  31. Fiske, C.H., and Subbarow, Y. The colorimetric determination of phosphorus.J. Biol. Chem. 66, 375 (1925).

    CAS  Google Scholar 

  32. Reeves, J.P., and Sutko, J.L.: Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. U.S.A. 76, 590 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. Pitts, B.J.R.: Stoichiometry of sodium-calcium exchange in cardiac sarcolemma vesicles.J. Biol. Chem. 254, 6232 (1979).

    PubMed  CAS  Google Scholar 

  34. Philipson, K.D., and Nishimoto, A.Y.: Na+−Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles.J. Biol. Chem. 255, 6880 (1981).

    Google Scholar 

  35. Philipson, K.D., Bersohn, M.M., and Nishimoto, A.Y.: Effects of pH on Na+−Ca2+ exchange in canine cardiac sarcolemmal vesicles.Circ. Res. 50, 287 (1982).

    PubMed  CAS  Google Scholar 

  36. Gilbert, J.R., and Meissner, G.: Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles.J. Membrane Biol. 69, 77 (1982).

    Article  CAS  Google Scholar 

  37. Reeves, J.P., and Sutko, J.L.: Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.Science 208, 1461 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. Guyton, A.C., Coleman, T.G., and Granger, H.J.: Circulation: overall regulation.Ann. Rev. Physiol. 34, 13 (1972).

    Article  CAS  Google Scholar 

  39. Aoki, K., Ikeda, N., Yamashita, K., Tazumi, K., Sato, I., and Hotta, K.: Cardiovascular contraction in spontaneously hypertensive rat: calcium interaction of myofibrils and subcellular membrane of heart and arterial smooth muscle.Jap. Circ. J. 38, 1115 (1974).

    PubMed  CAS  Google Scholar 

  40. Wei, J.W., Janis, R.A., and Daniel, E.E.: Calcium accumulation and enzymatic activities of subcellular fractions from aortas and ventricles of genetically hypertensive rats.Circ. Res. 39, 133 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.W., Lee, J.S., Park, Y.J. et al. Increase in Na+−Ca2+ exchange activity in sarcolemma isolated from mesenteric arteries of spontaneously hypertensive rats. Arch. Pharm. Res. 12, 128–134 (1989). https://doi.org/10.1007/BF02857736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857736

Keywords

Navigation