Skip to main content
Log in

Detection of N-acetyltranylcypromine and glucuronide of phenyl-hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine: Pharmacological implications

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In order to use for metabolic studies of tranylcypromine (TCP), TCP-phenyl-d5 was synthesized via the intermediates, 3-benzoylpropionic acid-d5 andtrans-2-phenylcyclopropanecarboxylic acid-d5. TCP (0.22 mmole/kg) and its deuterated analog were administered s.c. to the rats and GC/MS analyses of the urines led to the detection of N-acetyltranylcypromine (ATCP) and glucuronide conjugate of phenyl-hydroxylated ATCP. MAO activities in rat brain were measured using serotonin as the substrate.In vitro IC50 of ATCP was determined to be 10−3 M. The inhibitions by ATCP were not dependent on the preincubation time and were reversed by washing sedimented mitochondrial pellets after the preincubation.In vivo MAO inhibitions at various times of 0.5, 1.5, 3, 6, 12, and 24 hr after the administration of 0.4 mmole/kg (i.p.) of ATCP were found to be 0, 13, 73, 90, 89, and 74% respectively. Similarly, the inhibition percents by 0.015 mmole/kg (i.p.) of TCP were 94, 99, 95, 91, 71, and 49%. The results strongly suggest that deacetylated product of ATCP may account for itsin vivo MAO inhibition. The relationship between the metabolism via phenyl-hydroxylation and thein vivo potency of TCP was examined by QSAR study and it was found that groupings discriminating between the compounds withp-substituents and those without them only ensure high correlations, suggesting that ring-hydroxylation which occurs at the para position in most of the compounds is a determining factor to the potency of TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Kang, G.I.: Mechanism of the monoamine oxidase inhibition.Yakhak Hoeji 27, 321 (1983).

    CAS  Google Scholar 

  2. Paech, C.P., Salach, J.I., and Singer, T.P.: Suicide inactivation of monoamine oxidase bytrans-phenylcyclopropylamine.J. Biol. Chem. 255, 2700 (1980).

    PubMed  CAS  Google Scholar 

  3. Silverman, R.B.: Mechanism of inactivation of monoamine oxidase bytrans-2-phenylcyclopropylamine and the structure of the enzyme-inactivator adduct.J. Biol. Chem. 258, 14766 (1983).

    PubMed  CAS  Google Scholar 

  4. Silverman, R.B., and Hoffman, S.J.: N-(1-Methyl) cyclopropylbenzylamine. A novel inactivator of mitochondrial monoamine oxidase.Biochem. Biophys. Res. Commun. 101, 1396 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. Silverman, R.B., and Yamasaki, R.B.: Mechanismbased inactivation of mitochondrial monoamine oxidase by N-(1-methylcyclopropyl) benzylamine.Biochemistry 23, 1322 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. Youdim, M.B.H., Aronson, J.K., Blau, K., Green, A.R., and Grahame-Smith, D.G.: Tranylcypromine (parnate) over-dose: Measurement of tranylcypromine concentrations and MAO inhibitory activity and identification.Psychol. Med. 9, 377 (1979).

    PubMed  CAS  Google Scholar 

  7. Reynolds, G.P., Rausch, W.-D., and Riederer, P.: Effects of tranylcypromine stereoisomers on monoamine oxidation in man.Brit. J. Clin. Pharmacol. 9, 521 (1980).

    CAS  Google Scholar 

  8. Calverley, D.G., Baker, G.B., Coutts, R.T., and Dewhurst, W.G.: A method for measurement of tranylcypromine in rat brain regions using gas chromatography with electron capture detection.Biochem. Pharmacol. 30, 861(1981).

    Article  PubMed  CAS  Google Scholar 

  9. Kang G.I.: The use of stable isotope compounds in pharmaceutical research.J. Korean Pharm. Sci. 14, 145(1984).

    Google Scholar 

  10. Kang, G.I., and Chung, S.Y.: Identification of N-acetyl and hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine.Arch. Pharm. Res. 7, 65(1984).

    Article  CAS  Google Scholar 

  11. Levitt, M.J.: Rapid methylation of micro amounts of nonvolatile acids.Anal. Chem. 45, 618(1973).

    Article  CAS  Google Scholar 

  12. Kang, G.I., and Hong, S.G.: Synthesis and mass spectrometry of deuterium labeled tranylcypromine hydrochloride.Arch. Pharm. Res. 8, 77(1985).

    Article  Google Scholar 

  13. Somerville, L.F., and Allen, C.F.H.: β-Benzoylpropionic acid.Org. Syn., Coll. Vol.2 81 (1943).

    Google Scholar 

  14. Kaiser, C., Lester, B.M., and Zirkle, C.L.: 2-Substituted cyclopropylamines. I. Derivatives and analogs of 2 phenylcyclopropylamine.J. Med. Pharm. Chem. 4, 1243 (1962).

    Article  Google Scholar 

  15. Tedeschi, R.E.: Monoamine oxidase inhibition.U.S. Patent 2,997,422 (1961).

    Google Scholar 

  16. Sjoerdsma, A., Smith, T.E., Stevenson, T.D., and Udenfriend, S.: Metabolism of 5-hydroxytryptamine (serotonin) by monoamine oxidase.Proc. Soc. Exptl. Biol. Med. 89, 36(1955).

    CAS  Google Scholar 

  17. Udenfriend, S., Weissbach, H., and Clark, C.T.: The estimation of 5-hydroxytryptamine (serotonin) in biological tissues.J. Biol. Chem. 215, 337(1955).

    PubMed  CAS  Google Scholar 

  18. Lawry, O.H., Rosebrough, N.J., Forr, A.L., and Randall, R.T.: Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  19. Zirkle, C.L., Kaiser, C., Tedeschi, D.H., and Tedeschi, R.E.: 2-Substituted cyclopropylamines. II. Effect of structure upon monoamine oxidase-inhibitory activity as measuredin vivo by potentiation of tryptamine convulsions.J. Med. Pharm. Chem. 5, 1265 (1962).

    Article  CAS  Google Scholar 

  20. Hansch, C., and Fujita, T.: ρ-σ-n Analysis. A method for the correlation of biological activity and chemical structure.J. Am. Chem. Soc. 86, 1616(1964).

    Article  CAS  Google Scholar 

  21. Williams, D.A.: Drug metabolism. InPrinciples of medicinal chemistry (Foye, W.O., ed.), Lea & Febiger, Philadelphia, 1981, p. 91.

    Google Scholar 

  22. Kang G.I., and Chung, S.Y.: GC-FID analysis of tranylcypromine in rat urine.Yakhak Hoeji 29, 260 (1985).

    Google Scholar 

  23. Jori, A.: Genetic aspects of drug metabolism relating to drug action. InConcept in drug metabolism, part B (Jenner, P.et al. ed.), Marcel Dekker, Inc., New York, 1981, p. 265.

    Google Scholar 

  24. Baldessarini, R.J.: Drugs and the treatment of psychiatric disorders. InThe pharmacological basis of therapeutics 7th Ed. (Gilman, A.G.et al., ed.), Macmillan Publishing Co., New York 1985, p. 387.

    Google Scholar 

  25. Vessel, E.S.: Pharmacogenetics.N. Engl. J. Med 287, 904 (1972).

    Google Scholar 

  26. Danielson, T.J., Coutts, R.T., Baker, G.B., and Rubens, M.: Studiesin vivo andin vitro on N-acetylphenelzine.Proc. West. Pharmacol. Soc. 27, 507 (1984).

    PubMed  CAS  Google Scholar 

  27. Schröder, H.: Deacetylation of acetyl sulphapyridine in man.J. Pharm. Pharmacol. 25, 591 (1973).

    PubMed  Google Scholar 

  28. Vree, T.B., Tijhuis, M.W., Baakman, M., and Hekster, C.A.: Analysis of N4-trideuteroacetylsulphamerazine and its metabolites sulphamerazine and N4-acetylsulphamerazine in man by menas of high performance liquid chromatography and mass spectrometry.Biomed. Mass Spectrom. 10, 114 (1983).

    Article  PubMed  CAS  Google Scholar 

  29. Abeles, R.H.: Suicide enzyme.C&EN, Sept. 19, p. 48 (1983).

  30. Fuentes, J.A., Oleshansky, M.A., and Neff, N.H.: Comparison of the apparent antidepressant activity of(−) and (+) tranylcypromine in an animal model.Biochem. Pharmacol. 25, 801 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. Fujita, J.: Structure-activity relationships of monoamine oxidase inhibitors.J. Med. Chem. 16, 923 (1973).

    Article  PubMed  CAS  Google Scholar 

  32. Kang, G.I., and Chung, S.Y.: Apparent pKa and partition coefficient of tranylcypromine.Yakhak Howji 28, 293 (1984).

    Google Scholar 

  33. Martin, Y.C., Martin, W.B., and Taylor, J.D.: Regression analysis of the relationship between physical properties and thein vitro inhibition of monoamine oxidase by propynylamines.J. Med. Chem. 18, 883 (1975).

    Article  PubMed  CAS  Google Scholar 

  34. Johnson, C.L.: Quantitative structure-activity studies on monoamine oxidase inhibitors.J. Med. Chem. 19, 600 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mechanism of the MAO inhibition by 2-phenylcyclopropylamines VI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, G.I., Choi, H.K. Detection of N-acetyltranylcypromine and glucuronide of phenyl-hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine: Pharmacological implications. Arch. Pharm. Res. 9, 99–110 (1986). https://doi.org/10.1007/BF02857218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857218

Keywords

Navigation