Skip to main content
Log in

Molecular interaction between a reduced riboflavin derivative and salicylic acid derivatives

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The interaction of reduced riboflavin-2′,3′,4′,5′-tetrabutyrate with salicylic acid, aspirin, and salicylamide has been spectroscopically investigated to determine the binding mechanism. Hydrogen-1 and carbon-13 nuclear magnetic resonance, infrared, and absorption spectra were measured in chloroform-d and chloroform. The association of the reduced riboflavin with salicylic acid derivatives is different from that oxidized one. Salicylic acid and the reduced riboflavin form a cyclic hydrogen bonded complex through the imino (3-N, 5-N) protons and the carbonyl (2-C, 4-C) oxygens of the isoalloxazine ring of the latter, and the carboxylic hydroxyl proton and carbonyl oxygen of the former. Aspirin and the reduced riboflavin form a complex by the same mode as salicylic acid. Salicylamide forms a cyclic hydrogen bonded complex with the reduced riboflavin through the imino (3-N, 5-N) protons and the carbonyl (2-C, 4-C) oxygens of the isoalloxazine ring, and the amino proton and the carbonyl oxygen of salicaylmide. It appears that both the oxidized and reduced form of riboflavin are associated with salicylic acid derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Pullman, B. and Pullman, A.: Electron structure of the respiratory coenzyme.Proc. Natl. Acad. Sci., USA. 45, 136 (1959).

    Article  PubMed  CAS  Google Scholar 

  2. Grabe, B.: Electron distribution in high-energy phosphate and the transfer of energy from catabolism to anabolism to anabolism.Biochim. Biophys. Acta.,30, 560 (1958).

    Article  PubMed  CAS  Google Scholar 

  3. Shifrin, S.: Charge-transfer and exitation-energy transfer in a model for enzyme-coenzyme interaction.ibid,81, 205 (1964).

    CAS  Google Scholar 

  4. Yomosa, S.: Chaige-transfer molecular compounds in biological systems.Progr. Theor. Phys. Suppl.,40, 349 (1967).

    Google Scholar 

  5. Sakurai, T., and Hosoya, H.: Charge-transfer complexes of nicotinamide-adenine dinucleotide analogues and flavin mononucleotide.Biochim. Biophys. Acta.,112, 459 (1966).

    Article  CAS  Google Scholar 

  6. Honda, M.: On the electron-transfer in NAD-FMN system.J. Phys. Soc., Japan,31, 1196 (1971).

    Article  CAS  Google Scholar 

  7. Brody, T.M.: Action of sodium salicylate and related compounds on tissue metabolismin vitro.J. Pharmacol. Exp. Ther.,117, 39 (1956).

    PubMed  CAS  Google Scholar 

  8. Sproull, D.H.: The glycogenolytic action of sodium salicylate.Br. J. Pharmacol.,9, 262 (1954).

    CAS  Google Scholar 

  9. Spenny, J.G.: and Brown, M.: Effect on ASA on gastric mucosa.Gastroenterology,73, 995 (1977).

    Google Scholar 

  10. Fishgold, J.T., Field, J., and Hall, V.E.: Effect of sodium salicylate and acetylsalicylate on mesabolism of rat brain and liverin vitro.Am. J. Physiol.,164, 727 (1951).

    PubMed  CAS  Google Scholar 

  11. Levy, J.: Action of sodium salicylate and sulfadiazine on hyaluronidase.Bull. Soc. Chim. Biol.,28, 338 (1946).

    CAS  Google Scholar 

  12. Graham, J.D.P., and Parker, W.A.: Plasma concentration of salicylate.Q. J. Med.,17, 153 (1948).

    CAS  PubMed  Google Scholar 

  13. Galen, F.X., Truchot, R., and Michel, R.: Mechanism d action de 1 acid iodo-4-salicyligue sur la respiration des nitochondries isolees.Biochim. Pharmacol.,23, 1379 (1974).

    Article  CAS  Google Scholar 

  14. Millhorn, D.E., Eldridge, F.L., and Waldrop, T.G.: Effects of salicylate and 2,4-dinitrophenol on repiration and metabolism.J. Appl. Physio.,53, 925 (1982).

    CAS  Google Scholar 

  15. Millhorn, D.E., Eldridge, F.L., and Waldrop, T.G.: Central neural stimulation of repiration by sodium salicylate.Respiration Physiol.,51, 219 (1983).

    Article  CAS  Google Scholar 

  16. Wilson, C.O., Gisvold, O., and Doerge, R.F.:Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincot, Philadelphia, Pa., 47 (1977).

    Google Scholar 

  17. Huh, J.W., and YU, B.S.: A spectroscopic study of hydrogen bonding between riboflavin and salicylic acid derivatives.J. Pharm. Soc. Korea,20, 130 (1976).

    CAS  Google Scholar 

  18. Yu, B.S., Lee, S.J., and Chung, H.H.: Molecular interaction between riboflavin and salicylic acid darivatives in nonpolar solvents.J. Pharm. Sci.,72, 592 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. Kawano, K., Ohishi, N., Suzuki, A.T., Kyogoku, Y., and Yagi, K.: Nitrogen-15 and carbon-13 NMR of reduced flavins. Comparative study with oxidized flavins.Biochemistry,17, 3584 (1978).

    Article  Google Scholar 

  20. Kyogoku, Y., Kawano, K., Ohishi, N., Suzuki, A.T., and Yagi, K.: Comparison of NMR spectra of the oxidized and reduced forms of flavin.Flavins and Flavoproteins, Yagi, K., Elsevier, Amsterdam, 485 (1980).

    Google Scholar 

  21. YU, B.S., and Kyogoku, Y.: Association of a reduced riboflavin derivative with purines, pyrimidines and nicotinamide.Bull. Chem. Soc., Japan,43, 239 (1970).

    Google Scholar 

  22. Hemmerich, P., and Hass, W.:Reactivity of flavins, Yagi, K., Nagoya, Japan, P.1 (1975).

  23. Ghisla, S., Massey, V., Lhoste, J.M., and Mayhew, S.G.:Reactivity of flavins, Yagi, K., Nagoya, Japan, P.15 (1975).

  24. Lauterbur, P.C.: C13NMR spectroscopy (I). Aromatic hydrocarbons.J. Am. Chem. Soc.,83, 1888 (1961).

    Google Scholar 

  25. Yagi, K., Ohishi, N., Takai, A., Kawano, K., and Kyogoku, K.:Flavins and Flavoproteins, Proc. Int. Sympo., 5th, P.775 (1975).

  26. Grande, H.J., Gast, R., Van Berkei, W.J.H., and Mueller, F.: Carbon-13 NMR study on isoalloxazine and alloxazine derivatives.Helv. Chim. Acta.,60, 367 (1977).

    Article  CAS  Google Scholar 

  27. Yagi, K., Ohishi, N., Nishimoto, K., Choi, J.D., and Song, P.S.:Biochemistory,19, 1533 (1980).

    Google Scholar 

  28. Nishimoto, K., Watanabe, Y., and Yagi, K.: Hydrogen bonding of flavoprotein (I). Effect of hydrogen bonding on electronic spectra of flavoprotein.Biochim. Biophys. Acta.,526, 34 (1978).

    PubMed  CAS  Google Scholar 

  29. Sun, M., and Song, P.S.: Excited states and reactivity of 5-dezaflavin comparative studies with flavins.Biochemistry,12, 4663 (1973).

    Article  PubMed  CAS  Google Scholar 

  30. Song, P.S., Choi, J.D., Fagate, R.D., and Yagi, K.:Flavins and flavoproteins, Singer, T.P., Elsevier Amsterdam, P. 381 (1976).

    Google Scholar 

  31. Edmonson, D.E., Barman, B., and Tollin, G.: On the importance of the 5-N position in flavin coenzyme. Properties of free and protein-bound 5-deza analogs.Biochemistry,11, 1133 (1972).

    Article  Google Scholar 

  32. Chassy, B.M., and McCormick, D.B.: Structural requirements of the flavin-adenine dinucleotide for intramolecular complex formation.Biochemistry,4, 2612 (1965).

    Article  PubMed  CAS  Google Scholar 

  33. Massey, V., and Ganther, H.: Interpretation of the absorption spectra of flavoproteins D-amino acid oxidase.ibid,4, 1161 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. Mueller, F., Mayhew, S.G., and Massey, V.: Effect of temperature on the absorption spectra of free and protein-bound flavins.Biochemistry,12, 4654 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B.S., Oh, E.C. & Sohn, D.H. Molecular interaction between a reduced riboflavin derivative and salicylic acid derivatives. Arch. Pharm. Res. 8, 99–107 (1985). https://doi.org/10.1007/BF02857035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857035

Keywords

Navigation