Skip to main content
Log in

Prediction of the concentration of diphenylhydantoin in the brain using a physiological pharmacokinetic hybrid model

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A physiological pharmacokinetic hybrid model was developed in order to predict the disposition kinetics of diphenylhydantoin (DPH) in the brain from the plasma concentration data of DPH. The model was constructed under the assumptions of well-stirred, plasma flow-limited and linear tissue disposition kinetics of DPH. DPH was administered intravenously to the rats at a dose of 10 mg/kg together with/without sodium salicylate (SA; 10 mg/kg) and the DPH concentrations in the plasma and brain were determined. Plasma protein binding of DPH was also determined using equilibrium dialysis technique. Then the model was tested for its predictability of DPH concentrations in the brian from the plasma data of DPH. It was found that the predicted values of DPH concentrations in the brian were in fair agreement with the experimental values in the rats of both treaments. The 2-fold increase in the brain concentrations of DPH by SA-coadministration was predicted well from the plasma concentration and plasma free fraction (f p) data of DPH using the model. Therefore, the hybrid model was concluded to be very useful for the prediction of the concentrations of DPH in the brain from the plasma concentration data. Finally, DPH concentrations in the human brian was calculated using this model from plasma DPH data in the literature, yet the scale-up of this model to the human is not convinced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Yamaoka, K., Nagagawa, T. and Uno, T.: Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6, 547 (1978).

    Article  CAS  Google Scholar 

  2. Boxenbaum, H., Riegelman, S. and Elashoff, R.: Statistical estimations in pharmacokinetics.J. Pharmacokin. Biopharm. 2, 123 (1974).

    Article  CAS  Google Scholar 

  3. Wagner, J.: Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which has been fitted to the dataJ. Pharmacokin. Biopharm. 4, 443 (1976).

    Article  CAS  Google Scholar 

  4. King, F.G. and Dedrick, R.L.: Physiological model for the 2-deoxycofomycin in normal and leukemic mice.J. Pharmacokin. Biopharm. 9, 519 (1981).

    Article  CAS  Google Scholar 

  5. Terasaki, T., Iga, T., Sugiyama, Y. and Hanano, M.: Pharmacokinetic study on the metabolism mechanism of tissue distribution of doxorubicin: Inter organ and inter species variation of tissue to plasma partition coefficients in rats, rabbits, and guinea pigs.J. Pharm. Sci. 73, 1359 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. Himmelstein, K.J. and Lutz, R.L.: A review of the application of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7, 127 (1979).

    Article  CAS  Google Scholar 

  7. Boxenbaum, H.: Inter species scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10, 2011 (1982).

    Google Scholar 

  8. Dedrick, R.L: Animal Scale-up.J. Pharmacokin. Biopharm. 1, 435 (1973).

    Article  CAS  Google Scholar 

  9. Ichimura, F., Yokogawa, K., Yamana, T., Tsuji,Ji, A., Yamamoto, K., Murakami, S. and Mizukami, Y.: Physiological pharmacokinetic model for distribution and elimination of pentazocine, II. Study in rabbits and scale-up to man.Int. J. Pharmaceut. 19, 75 (1984).

    Article  CAS  Google Scholar 

  10. Lin, J.H., Sugiyama, Y., Awazu, S. and Hanano, M.:In vitro andin vivo evaluation of the tissue to blood partition coefficient for physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 10, 637 (1982).

    Article  CAS  Google Scholar 

  11. Lin, J.H., Sugiyama, Y., Awazu, S. and Hanano, M.: Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as wells as physiological data.J. Pharmacokin-Biopharm. 10, 649 (1982).

    Article  CAS  Google Scholar 

  12. Lin, J. H., Hayashi M., Awazu, S. and Hanano, M.: Correlation betweenin vitro andin vivo metabolism rate: Oxidation of ethoxybenzamide in rat.J. Pharmacobio-Dyn. 6, 327 (1978).

    CAS  Google Scholar 

  13. Weiss, M.: On pharmacokinetics in target tissues.Biopharm. Drug. Disp. 6, 57 (1985).

    Article  CAS  Google Scholar 

  14. Joachin, H.:Routine determinations of psycoactive drugs, biological/biochemical applications of liquid chromatography, vol.4, Dekker, p.211 (1984).

  15. Dedrick, D. L., Zaharko, D. S. and Lutz, R. L.: Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62, 882 (1973).

    Article  PubMed  CAS  Google Scholar 

  16. Yamaoka, K., Nakagawa, T. Tanaka, H., Yasuhara, M. and Hori, R.: A nonlinear multiple regression program, MULTI 2 (BAYES), based on bayesian algorithm for microcomputers.J. Pharmacobio-Dyn. 8, 246 (1985).

    PubMed  CAS  Google Scholar 

  17. Saunders, W. B.:Handbook of biological data. p.163 (1956).

  18. Yamaoka, K., Taniwagara, Y., Nakagawa, T. and Uno, T.: Pharmacokinetic analysis program (MULTI) for microcomputer,J. Pharmacobio-Dyn. 4, 879 (1981).

    PubMed  CAS  Google Scholar 

  19. Yamaoka, K. and Nakagawa, T.: A nonlinear least square program based on differential equations, MULTI (RUNGE), for microcomputers,J. Pharmacobio-Dyn. 6, 595 (1983).

    PubMed  CAS  Google Scholar 

  20. Guglar, R., Manion, C. V. and Azarnoff, D. L.: Phenytoin: Pharmacokinetics and bioavailability.Clin. Pharmacol. Ther. 135, 19 (1976).

    Google Scholar 

  21. Evans, W. E., Schentag, J. J. and Jusko, W. J.:Applied Pharmacokinetics 2nd ed., Applied therapeutics p.493 (1986).

  22. Loescher, W.: A comparative study of the protein binding of anticonvulsant drugs in serum of dogs and man.J. Pharmacol. Exp. Ther. 208, 429 (1979).

    CAS  Google Scholar 

  23. Benedek, I. H., Blouin, R. A. and Mcnamara, P.J.: Influence of smoking on serum protein composition and the protein binding of drugs.J. Pharm. Pharmacol. 36, 214 (1984).

    PubMed  CAS  Google Scholar 

  24. Kurata, D. and Wilkinson, G. R.: Erythrocyte uptake and plasma binding of diphenylhydantoin,Clin. Pharmacol. Ther. 16, 355 (1974).

    PubMed  CAS  Google Scholar 

  25. Lunde, P. K. M., Range, A., Yaffe, S. J., Lund, L. and Sjoqvist, F.: Plasma protein binding of diphenylhydantoin in man. Interaction with other drugs and the effect of temperature and plasma dilution.Clin. Pharm. Ther. 11, 846 (1970).

    CAS  Google Scholar 

  26. Salle, E. D., Pacini, G. M. and Morselli, P. L.: Studies on plasma protein binding of carbamazepine.Pharmacol. Res. Commun. 6, 193 (1974).

    Article  PubMed  Google Scholar 

  27. Hooper, W. D., Dubetz, D. K., Bochner, F., Cotter L. M., Smith, G. A., Eadie, M. J. and Tyrer, J. H.: Plasma protein binding of carbamazepine.Clin. Pharmacol. Ther. 17, 433 (1975).

    PubMed  CAS  Google Scholar 

  28. Loescher, W.: Serum protein binding and pharmacokinetics of valproate in dog and mouse.J. Pharmacol. Exp. Ther. 204 255 (1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, SH., Shim, CK., Lee, MH. et al. Prediction of the concentration of diphenylhydantoin in the brain using a physiological pharmacokinetic hybrid model. Arch. Pharm. Res. 13, 221–226 (1990). https://doi.org/10.1007/BF02856525

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856525

Keywords

Navigation