Skip to main content
Log in

Distribution of potato tuber proteins during development

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

This study reports the distribution of two major tuber proteins, patatin and the 22-kilodalton (kD) protein and their mRNAs, in developing potato plants grown in the field under two diverse locations. Patatin was present at the highest levels in root tissue of all cultivars examined, excluding tubers. Root patatin mRNA accumulated from 10 to 20% of that of tubers. Patatin levels varied in leaf and stem tissue, depending on the cultivar and developmental stage. The banding pattern of the root and stem patatin proteins resolved on SDS-polyacrylamide gel electrophoresis was distinct from the tuber form, while the patatin transcript detected in root and stem mRNA from these tissues was approximately the same size as the tuber transcript. The 22-kD protein was detected in roots, stems, and leaves with slight quantitative differences among cultivars. Excluding tubers, the greatest and most consistent levels of this protein type occurred in leaf tissue. It was concluded that both tuber proteins can be expressed to detectable levels in nontuber tissues and that levels of accumulation seem to be affected by genotype (cultivar) and environmental factors, as well as stage of development.

Compendio

Este estudio describe la distribución de dos proteínas principales del tubérculo, la patatina y la 22-kilodalton (kD) y sus mRNAs en plantas de papa en desarrollo creciendo en el campo en dos localidades diferentes. Se encontre que los niveles más altos de patatina estaban presentes en los tejidos de la raíz de todos los cultivares examinados, excluyendo los tubérculos. El mRNA de la patatina de la raíz acumuló de 10 a 20% de aquel en los tubérculos. Los niveles de patatina variaron en los tejidos de hojas y tallos, de acuerdo con el cultivar y el estado de desarrollo. La forma de las bandas de las patatinas de raíz y tallo separadas por electroforesis en geles de SDS-poliacrilamida fue distinta de la forma en los tubérculos, mientras que la patatina transcrita detectada en el mRNA de raíz y tallo de estos tejidos fue aproximadamente del mismo tamaño que la transcrita del tubérculo. La proteína 22-kD fue detectada en raíces, tallos y hojas con pequeñas diferencias cuantitativas entre los cultivares. Excluyendo a los tubérculos, los mayores y más consistentes niveles de este tipo de proteína se encontraron en el tejido de las hojas. Se conduye que ambas proteínas de los tubérculos pueden ser expresadas a niveles detectables en tejidos diferentes a los de los tubérculos y que los niveles de acumulacion parecen ser afectados por el genotipo (cultivar) y los factores ambientales, al igual que por el estado de desarrollo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bradford, M.N. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–25.

    Article  PubMed  CAS  Google Scholar 

  2. Gregory, L.E. 1965. Physiology of tuberization in plants. Encycl Plant Physiol 15:1328–1354.

    Google Scholar 

  3. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, L., D.J. Hannapel, G.A. Mignery, J. Shumway and W.D. Park. 1983. Control of tuber protein synthesis in potato.In: Plant Molecular Biology, UCLA Symposium, Alan R. Liss, Inc., New York. pp. 355–365.

    Google Scholar 

  5. Logemann, J., J.E. Mayer, J. Schell and L. Willmitzer. 1988. Differential expression of genes in potato tubers after wounding. Proc Natl Acad Sci USA 85:1136–1140.

    Article  PubMed  CAS  Google Scholar 

  6. Mignery, G.A., C.S. Pikaard, D. J. Hannapel and W.D. Park. 1984. Isolation and sequence analysis of cDNA for the major potato tuber protein, patatin. Nucleic Acids Res 12:7987–8000.

    Article  PubMed  CAS  Google Scholar 

  7. Paiva, E., R.M. Lister and W.D. Park. 1983. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol 71:161–168.

    PubMed  CAS  Google Scholar 

  8. Park, W.D., D.J. Hannapel, G.A. Mignery and C.S. Pikaard. 1985. Molecular approaches to the study of the major tuber proteins.In: P Li, (Ed.), Potato Physiology. Academic Press, New York. pp. 261–278.

    Google Scholar 

  9. Pikaard, C.S., D.J. Hannapel, J.S. Brusca and W.D. Park. 1987. The two classes of genes for the major tuber protein, patatin, are differentially expressed in tubers and roots. Nucleic Acids Res 15:1979–1994.

    Article  PubMed  CAS  Google Scholar 

  10. Racusen, D. 1983. Occurrence of patatin during growth and storage of potato tubers. Can J Bot 61:370–373.

    CAS  Google Scholar 

  11. Racusen, D. 1984. Lipid acyl hydrolase of patatin. Can J Bot 62:1640–1644.

    CAS  Google Scholar 

  12. Racusen, D. and M. Foote. 1980. A major soluble glycoprotein of potato. J Food Biochem 4:43–52.

    Article  CAS  Google Scholar 

  13. Rocha-Sosa, M., U. Sonnewald, W. Frommer, M. Stratmann, J. Schell and L. Willmitzer. 1989. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8:23–29.

    PubMed  CAS  Google Scholar 

  14. Rosahl, S., P. Eckes, J. Schell and L. Willmitzer. 1986. Organ-specific gene expression in potato: Isolation and characterization of tuber-specific cDNA sequences. Mol Gen Genet 202:368–373.

    Article  CAS  Google Scholar 

  15. Rosahl, S., J. Schell and L. Willmitzer. 1987. Expression of a tuber-specific storage protein in transgenic tobacco plants: Demonstration of an esterase activity. EMBO J 6:1155–1159.

    PubMed  CAS  Google Scholar 

  16. Stiekema, W.J., F. Heidekamp, W.G. Dirkse, J. van Beckum, P. de Haan, C.T. Hosch and J.D. Louwerse. 1988. Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol Biol 11:255–269.

    Article  CAS  Google Scholar 

  17. Suh, S.G., J.E. Peterson, W.J. Stiekema and D.J. Hannapel. 1990. Purification and characterization of the 22-kilodalton potato tuber proteins. Plant Physiol 94:40–45.

    Article  PubMed  CAS  Google Scholar 

  18. Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  19. Wenzler, H.C., G.A. Mignery, L.M. Fisher and W.D. Park. 1989. Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: High-level expression in tubers and sucrose-inducible expression in cultured leaf and stem expiants. Plant Mol Biol 12:41–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a research grant from the Iowa State University Biotechnology Council. Journal Paper No. J-13779 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA. Project No. 2846.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannapel, D.J. Distribution of potato tuber proteins during development. American Potato Journal 68, 179–190 (1991). https://doi.org/10.1007/BF02853898

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853898

Additional Key Words

Navigation