Skip to main content
Log in

Turnover of14C-labelled oat residues and small molecular organic compounds in two soils under different levels of mineral nutrition

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D W, Saggar S and Bettany J R 1981 Particle size fractions and their use in studies of soil organic matter. I. The nature and distribution of carbon, nitrogen and sulfur. Soil Sci. Soc. Am. J. 45, 767–772.

    Article  CAS  Google Scholar 

  • Bentley R and Campbell M J 1968 Metabolism of Cyclic Compounds. VII. Secondary Metabolism of Fungi. Elsevier Publ. Comp., Amsterdam.

    Google Scholar 

  • Brown A, Mathur S P, Kauri T and Kushner D J 1988 Measurement and significance of cellulose in peat soils. Can. J. Soil Sci. 68, 681–685.

    CAS  Google Scholar 

  • Cameron R S and Posner A M 1979 Mineralisable organic nitrogen in soil fractionated according to particle size. J. Soil Sci. 30, 565–577.

    Article  CAS  Google Scholar 

  • Chichester F W 1970 Transformation of fertilizer nitrogen in soil. II. Total and15N-labelled nitrogen of soil organo-mineral sedimentation fractions. Plant and Soil 33, 437–456.

    Article  CAS  Google Scholar 

  • Christensen B T 1986 Barley straw decomposition under field conditions: Effect of placement and initial nitrogen content on weight loss and nitrogen dynamics. Soil Biol. Biochem. 18, 523–529.

    Article  Google Scholar 

  • Christensen B T 1987 Decomposability of organic matter in particle-size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435.

    Article  Google Scholar 

  • Durall D M and Parkinson D 1987 Mineralization potential in surface mine-spoils oif the labile and recalcitrant fractions of14C-labelled timothy (Phleum pratense) litter. Soil Biol. Biochem. 19, 43–48.

    Article  CAS  Google Scholar 

  • Flaig W, Beutelspacher H and Rietz E 1975 Chemical composition and physical properties of humic substances.In Soil Components Vol. I. Ed. J E Gieseking. pp 1–211. Springer-Verlag, Berlin.

    Google Scholar 

  • Fores E, Menendez M and Comin F A 1988 Rice straw decomposition in rice field soil. Plant and Soil 109, 145–146.

    Article  Google Scholar 

  • Freytag H E and Igel H 1970 Verfolgung der Humifizierung und des Stickstoffeinbaues in die Huminstoffe nach Zusatz von Glucose (1–614C) und (15NH4)2SO4 zum Boden. Albrecht Thaer Arch. 14, 495–506.

    CAS  Google Scholar 

  • Führ F and Sauerbeck D 1963 The uptake of straw decomposition products by plant roots. Rep. FAO-IAEA Techn. Meet. Brunswick, 73–83.

  • Haider K, Martin J P and Rietz E 1977 Decomposition in soil14C-labelled coumaryl alcohols; free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci. Soc. Am. J. 41, 556–562.

    Article  CAS  Google Scholar 

  • Halsbach J and Klaška F 1978 Humification of barley straw under model conditions. Trans. Intern. Symp. Humus et Planta VII, Brno, 300–303.

  • He X-T, Stevenson F J, Mulvaney R L and Kelley K R 1988 Incorporation of newly immobilized15N into stable organic forms in soil. Soil Biol. Biochem. 20, 75–81.

    Article  CAS  Google Scholar 

  • Heng S and Goh K M 1984 Organic matter in forest soils and the mineralization of soil carbon and nitrogen. Soil Biol. Biochem. 16, 201–202.

    Article  CAS  Google Scholar 

  • Igel H 1969 Über die Humifizierung von14C-markierten Glucose und Zellulose unter besonderer Berücksichtigung einer zusätzlichen Mineralstoffgabe und des nativen Huminstoffspiegels. Albrecht Thaer Archiv. 13, 267–282.

    CAS  Google Scholar 

  • Ivarson K O and Stevenson I J 1964 The decomposition of radioactive acetate in soils. II. The distribution of radioactivity in soil organic fractions. Can. J. Microbiol. 10, 677–682.

    PubMed  CAS  Google Scholar 

  • Jenkinson D S 1972 Studies on the decomposition of14C-labelled organic matter in soil. Soil Science 111, 64–70.

    Article  Google Scholar 

  • Kanazawa S and Yoneyama T 1980a Microbial degradation of15N-labelled rice residues in soil during two years’ incubation under flooded and upland conditions. I. Decay of residue and soil microflora. Soil Sci. Plant Nutr. 26, 229–239.

    Google Scholar 

  • Kanazawa S and Yoneyama T 1980b Microbial degradation of15N-labelled rice residues in soil during two years’ incubation under flooded and upland conditions. II. Transformation of residue nitrogen. Soil Sci. Plant Nutr. 26, 241–254.

    Google Scholar 

  • Kuiters A T and Denneman C A J 1987 Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem. 19, 765–769.

    Article  CAS  Google Scholar 

  • Ladd J N and Brisbane P G 1967 Release of amino acids from soil humic acids by proteolytic enzymes. Aust. J. Soil Sci. Res. 5, 161–171.

    Article  CAS  Google Scholar 

  • Łakomiec I 1966 Wpływ wieloletniego nawazenia na skład zwiæzkøw prøchnicowych w glebach bielicowych. Roczn. Glebozn. 16, 131–156.

    Google Scholar 

  • Lohm U, Larsson K and Nômmik H 1984 Acidification and liming of coniferous forest soil: Long-term effect on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biol. Biochem. 16, 343–346.

    Article  CAS  Google Scholar 

  • Lowe L E and Hinds A A 1983 The mineralization of nitrogen and sulfur from particle-size separates of gleysolic soils. Can. J. Soil Sci. 63, 761–766.

    CAS  Google Scholar 

  • Martin J P and Haider K 1969 Phenolic polymers ofStachybotrys atra, Stachybotrys chartarum andEpicoccum nigrum in relation to humic acid formation. Soil Sci. 107, 260–270.

    Article  CAS  Google Scholar 

  • Martin J P, Zunino H, Peirano P, Caiozzi M and Haider K 1982 Decomposition of14C-labelled lignins, model humic acid polymers, and fungal melanins in allophanic soils. Soil Biol. Biochem. 14, 289–293.

    Article  CAS  Google Scholar 

  • Marumoto T, Anderson J P E and Domsch K H 1982 Decomposition of14C- and15N-labelled microbial cells in soil. Soil Biol. Biochem. 14, 461–467.

    Article  CAS  Google Scholar 

  • Mayandon J and Batistic L 1978 Decomposition des acides amines14C dans le sol. Soil Biol. Biochem. 10, 557–559.

    Article  Google Scholar 

  • Mott S C, Davenport J R and Thomas R L 1988 Mineralization and redistribution of carbon from surficial and buried corn stalks. Can. J. Soil Sci. 68, 687–691.

    CAS  Google Scholar 

  • Murayama S 1988 Microbiol synthesis of saccharides in soils incubated with13C-labelled glucose. Soil Biol. Biochem. 20, 193–199.

    Article  CAS  Google Scholar 

  • Mutatkar V K and Wagner G H 1967 Humification of carbon-14 labeled glucose in soils of Sanborn field. Soil Sci. Soc. Am. Proc. 31, 66–70.

    Article  Google Scholar 

  • Nowak G 1982 Przemiany roślinnej materii organicznej znakowanej izotopem14C w glebach intensywnie nawo zonych. Zesz. Nauk. AR-T Olszt. 35, 3–57.

    Google Scholar 

  • Pereverzev V N 1988 Rate of decomposition of plant residues and humus formation in the soils of the Khibiny Mountains. Pochvovedeniye 2, 68–77.

    Google Scholar 

  • Roletto E and Ottino P 1984 Analytical characterization of humic substances from composted lignocellulosic residues. Agric. Wastes 11, 181–195.

    Article  CAS  Google Scholar 

  • Rovira A D and McDougall B M 1967 Microbiological and biochemical aspects of the rhizosphere. Soil Biochem. Vol., 417–460.

  • Sauerbeck D 1966 Über den Abbau14C-markierten organischer Substanzen im Boden und ihren Einfluss auf den Humushaushalt. Habilitationsschr. Bonn.

    Google Scholar 

  • Sauerbeck D and Führ F 1966 Routineverfahren zur empfindlichen Messung der Menge und der Radioaktivität von14C. Landw. Forsch. 20, 75–84.

    Google Scholar 

  • Sivapalan K 1982 Humification of polyphenol-rich plant residues. Soil Biol. Biochem. 14, 309–310.

    Article  CAS  Google Scholar 

  • Sørensen L H 1981 Carbon-nitrogen relationships during the humification of cellulose in soil containing different amounts of clay. Soil Biol. Biochem. 13, 313–321.

    Article  Google Scholar 

  • Toussoun T A, Weinholdt A R, Lindermann R G and Patrick Z A 1968 Nature of phytotoxic substances produced during plant residue decomposition in soil. Phytopathol. 58, 41–45.

    CAS  Google Scholar 

  • Veen J A van, Ladd J N and Amato M 1985 Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(u)]] glucose and [[15N] (NH4 2SO4) under different moisture regimes. Soil Biol. Biochem. 17, 747–756.

    Article  Google Scholar 

  • Voroney R P, Paul E A and Anderson D W 1989 Decomposition of wheat straw and stabilization of microbial products. Can. J. Soil Sci. 69, 63–77.

    Article  Google Scholar 

  • Wagner G H 1968 Significance of microbial tissues to soil organic matter. Proc. Symp. FAO-IAEA, Vienna, 197–205.

  • White C S, Moore D I, Horner J D and Gosz J R 1988 Nitrogen mineralization-immobilization response to field N or C perturbations: An elevation of a theoretical model. Soil Biol. Biochem. 20, 101–105.

    Article  CAS  Google Scholar 

  • Whitehead D C, Buchan H and Hartley R D 1975 Components of soil organic matter under grass and arable cropping. Soil Biol. Biochem. 71, 65–71.

    Article  Google Scholar 

  • Zunino H, Borie F and Aguilera S 1982 Decomposition of14C-labelled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol. Biochem. 14, 37–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, G., Nowak, J. Turnover of14C-labelled oat residues and small molecular organic compounds in two soils under different levels of mineral nutrition. Plant Soil 122, 67–77 (1990). https://doi.org/10.1007/BF02851911

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851911

Key words

Navigation