Skip to main content
Log in

Plant Residues Decomposition and Formation of Active Organic Matter in the Soil of the Incubation Experiments

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The decomposition and mineralization of various plant residues (oak and aspen leaves, pine needles, small branches and thin roots of trees, aboveground biomass and roots of meadow grasses, aboveground biomass and roots of clover, and straw and roots of barley) were investigated in the laboratory experiments by quantitative measurement of produced C–CO2. The plant residues were mixed with vermiculite or gray forest soil (Greyzemic Phaeozems Albic) and incubated under constant temperature and moisture conditions. After a year of incubation, 25–67% of Corg in plant residues were mineralized. Oak leaves, aboveground mass of meadow grasses, and aboveground mass and roots of clover were characterized by a three-pool structure of organic matter with moderate (0.1 > k1 > 0.01 day–1), slow (0.01 > k2 > 0.001 day–1), and very slow (k3 < 0.001 day–1) mineralization rates, while the other types of plant residues had only a two-pool structure with slow and very slow mineralization rates. An opposite relationship between the decomposition rate and the C : N ratio in the plant residues was found. Poorly decomposable types of plant residues were the main source for particulate organic matter (CPOM) in the soil, while highly decomposable types were the main source for microbial biomass (Cmic). The content of potentially mineralizable organic matter in the soil with plant residues correlated positively with CPOM and with Cmic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. N. Kudeyarov, “Soil and biogenic carbon dioxide sink in the territory of Russia: an analytical review,” Eurasian Soil Sci. 51, 599–612 (2018). https://doi.org/10.1134/S1064229318060091

    Article  Google Scholar 

  2. A. A. Larionova, A. K. Kvitkina, S. S. Bykhovets, V. O. Lopes de Gerenyu, Yu. G. Kolyagin, and V. V. Kaganov, “Effect of nitrogen on mineralization and humification of forest litters in model experiment,” Lesovedenie, No. 2, 128–139 (2017).

    Google Scholar 

  3. A. A. Larionova, A. N. Maltseva, V. O. Lopes de Gerenyu, A. K. Kvitkina, S. S. Bykhovets, B. N. Zolotareva, and V. N. Kudeyarov, “Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment,” Eurasian Soil Sci. 50, 422–431 (2017). https://doi.org/10.1134/S1064229317020089

    Article  Google Scholar 

  4. A. N. Mal’tseva, B. N. Zolotareva, and D. L. Pinskii, “Transformation of corn plant residues in loamy and sandy substrates,” Eurasian Soil Sci. 47, 466–477 (2014). https://doi.org/10.1134/S1064229314050147

    Article  Google Scholar 

  5. D. L. Pinskii, A. N. Maltseva, B. N. Zolotareva, and E. D. Dmitrieva, “Transformation kinetics of corn and clover residues in mineral substrates of different composition,” Eurasian Soil Sci. 50, 681–687 (2017). https://doi.org/10.1134/S1064229317060096

    Article  Google Scholar 

  6. V. M. Semenov, “Formation of extra nitrogen in fertilized soils and its role in the plant nutrition,” Agrokhimiya, No. 8, 5–12 (1999).

    Google Scholar 

  7. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review”, Eurasian Soil Sci. 46, 355–368 (2013). https://doi.org/10.1134/S106422931304011X

    Article  Google Scholar 

  8. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, A. S. Tulina, and V. N. Kudeyarov, “Kinetic analysis of the decomposition and mineralization of plant residues in gray forest soil,” Eurasian Soil Sci. 34, 503–511 (2001).

    Google Scholar 

  9. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, and N. A. Semenova, “The role of plant biomass in the formation of the active pool of soil organic matter,” Eurasian Soil Sci. 37, 1196–1204 (2004).

    Google Scholar 

  10. M. V. Semenov, E. V. Stolnikova, N. D. Ananyeva, and K. V. Ivashchenko, “Structure of the microbial community in soil catena of the right bank of the Oka River,” Biol. Bull. (Moscow), 40, 266–274 (2013). https://doi.org/10.1134/S1062359013030084

    Article  Google Scholar 

  11. S. Ya. Trofimov, A. S. Lazarev, and A. D. Fokin, “Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil,” Eurasian Soil Sci. 45, 1110–1119 (2012).

    Article  Google Scholar 

  12. E. C. Adair, W. J. Parton, S. J. Del Grosso, W. L. Silver, M. E. Harmon, S. A. Hall, I. C. Burke, and S. C. Hart, “Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates,” Global Change Biol. 14 (11), 2636–2660 (2008). https://doi.org/10.1111/j.1365-2486.2008.01674.x

    Article  Google Scholar 

  13. A. Bani, S. Pioli, M. Ventura, P. Panzacchi, L. Borruso, R. Tognetti, G. Tonon, and L. Brusetti, “The role of microbial community in the decomposition of leaf litter and deadwood,” Appl. Soil Ecol. 126, 75–84 (2018). https://doi.org/10.1016/j.apsoil.2018.02.017

    Article  Google Scholar 

  14. Y. M. Bar-On, R. Phillips, and R. Milo, “The biomass distribution on Earth,” Proc. Natl. Acad. Sci. U.S.A. 115 (25), 6506–6511 (2018). https://doi.org/10.1073/pnas.1711842115

    Article  Google Scholar 

  15. P. Baruya, World Forest and Agricultural Crop Residue Resources for Cofiring (IEA Clean Coal Centre, London, 2015).

    Google Scholar 

  16. B. Berg and C. McClaugherty, Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 3rd ed. (Springer-Verlag, Berlin, 2014). https://doi.org/10.1007/978-3-642-38821-7

    Book  Google Scholar 

  17. M. A. Bradford, B. Berg, D. S. Maynard, W. R. Wieder, and S. A. Wood, “Understanding the dominant controls on litter decomposition,” J. Ecol. 104, 229–238 (2016). https://doi.org/10.1111/1365-2745.12507

    Article  Google Scholar 

  18. R. G. Burns, J. L. DeForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub, and A. Zoppini, “Soil enzymes in a changing environment: current knowledge and future directions,” Soil Biol. Biochem. 58, 216–234 (2013). https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  Google Scholar 

  19. C. A. Cambardella and E. T. Elliott, “Particulate soil organic-matter changes across a grassland cultivation sequence,” Soil Sci. Soc. Am. J. 56 (3), 777–783 (1992). https://doi.org/10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  20. M. J. Castellano, K. E. Mueller, D. C. Olk, J. E. Sawyer, and J. Six, “Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept,” Global Change Biol. 21 (9), 3200–3209 (2015). https://doi.org/10.1111/gcb.12982

    Article  Google Scholar 

  21. W. K. Cornwell, J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, et al., “Plant species traits are the predominant control on litter decomposition rates within biomes worldwide,” Ecol. Lett. 11, 1065–1071 (2008). https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  Google Scholar 

  22. M. F. Cotrufo, J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton, “Formation of soil organic matter via biochemical and physical pathways of litter mass loss,” Nat. Geosci. 8, 776–779 (2015). https://doi.org/10.1038/NGEO2520

    Article  Google Scholar 

  23. M. F. Cotrufo, M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul, “The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?” Global Change Biol. 19 (4), 988–995 (2013). https://doi.org/10.1111/gcb.12113

    Article  Google Scholar 

  24. K.-H. Erb, T. Kastner, C. Plutzar, A. L. S. Bais, N. Carvalhais, T. Fetzel, S. Gingrich, H. Haberl, C. Lauk, M. Niedertscheider, J. Pongratz, M. Thurner, and S. Luyssaert, “Unexpectedly large impact of forest management and grazing on global vegetation biomass,” Nature 553, 73–76 (2018). https://doi.org/10.1038/nature25138

    Article  Google Scholar 

  25. C. Fortunel, E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Doležal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, et al., “Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe,” Ecology 90 (3), 598–611 (2009). https://doi.org/10.1890/08-0418.1

    Article  Google Scholar 

  26. G. T. Freschet, W. K. Cornwell, D. A. Wardle, T. G. Elumeeva, W. Liu, B. G. Jackson, V. G. Onipchenko, N. A. Soudzilovskaia, J. Tao, and J. H. C. Cornelissen, “Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide,” J. Ecol. 101, 943–952 (2013). https://doi.org/10.1111/1365-2745.12092

    Article  Google Scholar 

  27. K. Hakala, M. Kontturi, and K. Pahkala, “Field biomass as global energy source,” Agric. Food Sci. 18 (3–4), 347–365 (2009).

    Article  Google Scholar 

  28. G. Incerti, G. Bonanomi, F. Giannino, F. Carteni, R. Spaccini, P. Mazzei, A. Piccolo, and S. Mazzoleni, “OMDY: a new model of organic matter decomposition based on biomolecular content as assessed by 13C‑CPM-AS-NMR,” Plant Soil 411 (1–2), 377–394 (2017). https://doi.org/10.1007/s11104-016-3039-2

    Article  Google Scholar 

  29. M. Knorr, S. D. Frey, and P. S. Curtis, “Nitrogen additions and litter decomposition: a meta-analysis,” Ecology 86 (12), 3252–3257 (2005). https://doi.org/10.1890/05-0150

    Article  Google Scholar 

  30. Y. Kuzyakov, J. K. Friedel, and K. Stahr, “Review of mechanisms and quantification of priming effects,” Soil Biol. Biochem. 32, 1485–1498 (2000). https://doi.org/10.1016/S0038-0717(00)00084-5

    Article  Google Scholar 

  31. R. Lal, “World crop residues production and implications of its use as a biofuel,” Environ. Int. 31 (4), 575–584 (2005). https://doi.org/10.1016/j.envint.2004.09.005

    Article  Google Scholar 

  32. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069

    Article  Google Scholar 

  33. S. Manzoni and A. Porporato, “Soil carbon and nitrogen mineralization: theory and models across scales,” Soil Biol. Biochem. 41 (7), 1355–1379 (2009). https://doi.org/10.1016/j.soilbio.2009.02.031

    Article  Google Scholar 

  34. Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, et al., “A large and persistent carbon sink in the World’s forests,” Science 333 (6045), 988–993 (2011). https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  35. I. C. Prentice, G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. LeQuéré, R. J. Scholes, and D. W. R. Wallace, “The carbon cycle and atmospheric carbon dioxide,” in Climate Change 2001: The Scientific Basis, Ed. by J. T. Houghton, (Cambridge University Press, Cambridge, 2001), pp. 183–237.

    Google Scholar 

  36. C. E. Prescott, “Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?” Biogeochemistry 101, 133–149 (2010). https://doi.org/10.1007/s10533-010-9439-0

    Article  Google Scholar 

  37. E. W. Sulzman, J. B. Brant, R. D. Bowden, and K. Lajtha, “Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest,” Biogeochemistry 73, 231–256 (2005). https://doi.org/10.1007/s10533-004-7314-6

    Article  Google Scholar 

  38. L. Sun, M. Teramoto, N. Liang, T. Yazaki, and T. Hirano, “Comparison of litter-bag and chamber methods for measuring CO2 emissions from leaf litter decomposition in a temperate forest,” J. Agric. Meteorol. 73 (2), 59–67 (2017). https://doi.org/10.2480/agrmet.D-16-00012

    Article  Google Scholar 

  39. J. M. Talbot, D. J. Yelle, J. Nowick, and K. K. Treseder, “Litter decay rates are determined by lignin chemistry,” Biogeochemistry 108 (1–3), 279–295 (2012). https://doi.org/10.1007/s10533-011-9599-6

    Article  Google Scholar 

  40. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57, 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  41. D. Zhang, D. Hui, Y. Luo, and G. Zhou, “Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors,” J. Plant Ecol. 1 (2), 85–93 (2008). https://doi.org/10.1093/jpe/rtn002

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no 17-04-00707-а. The assessment of the role of plant residues as a source of atmospheric СО2 was performed within the framework of governmental assignment, registration no. 0191-2019-0045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Semenov.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.M., Pautova, N.B., Lebedeva, T.N. et al. Plant Residues Decomposition and Formation of Active Organic Matter in the Soil of the Incubation Experiments. Eurasian Soil Sc. 52, 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319100119

Keywords:

Navigation