Skip to main content
Log in

Implantable direct current stimulation in para-axial cervical arthrodesis

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

This retrospective, case-controlled pilot study was designed to examine the efficacy and safety of an implantable direct current bone growth stimulator (IDCBGS) as an adjunct to cervical arthrodesis in patients at high risk for nonunion after undergoing cervical fusion in region from the occiput to C3. Twenty patients underwent para-axial cervical arthrodesis (involving posterior spine fusion and instrumentation using standard surgical techniques) for the correction of instability. All were at high risk for nonunion due to advanced age, rheumatoid arthritis, prior failed fusion attempts, infection, or immunosuppressive drug use. An IDCBGS was used to augment the surgical procedure. The mean follow-up period was 19 months, and 16 patients were available for follow-up. Radiographic evidence of fusion was demonstrated in 15 of 16 patients (94%). After surgery, all patients demonstrated clinical stabilization, a resolution of symptoms in combination with an improvement in neurologic status, or both. The mean elapsed time before fusion occurred was 4.6 months. No neurologic complications related to cathode or generator placement were observed. The use of the stimulator as an adjunct to instrument-or non-instrument-assisted surgical fusion of the para-axial region in these high-risk patients appeared both safe and efficacious. Further investigation is warranted to define the possible role and clinical utility of the IDCBGS in selected patients requiring cervical fusion, particularly those at high risk for nonunion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickman CA, Sonntag VKH. Surgical management of atlantoaxial nonunions.J Neurosurg. 1995;83:248–253.

    PubMed  CAS  Google Scholar 

  2. White AA, Panjabi MM. The clinical biomechanics of the occiptoatlantoaxial complex.Orthop Clin North Am. 1978;9:867–878.

    PubMed  Google Scholar 

  3. Grob D, Crisco JJ, Panjabi MM, Wang P, Dvorak J. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques.Spine. 1992;17:480–490.

    Article  PubMed  CAS  Google Scholar 

  4. Apostolides PJ, Dickman CA, Golfinos JG, Papadopoulos SM, Sonntag VKH. Threaded Steinmann pin fusion of the craniovertebral junction.Spine. 1996;21:1630–1637.

    Article  PubMed  CAS  Google Scholar 

  5. Bauman S, Welch W, Bloom M. Intraoperative SSEP detection of ulnar nerve compression or ischemia in an obese patient: a unique complication associated with a specialized spinal retraction system.Arch Phys Med Rehab. 2000;81:130–132.

    Google Scholar 

  6. Ellis PM, Findlay JM. Craniocervical fusion with contoured Luque rod and autogenic bone graft.Can J Surg. 1994;37:50–54.

    PubMed  CAS  Google Scholar 

  7. Fehlings MG, Errico T, Cooper P, Benjamin V, DiBartolo T. Occipitocervical fusion with a five-millimeter malleable rod and segmental fixation.Neurosurgery. 1993;32:198–207.

    Article  PubMed  CAS  Google Scholar 

  8. Pait TG, Al-Mefty O, Boop FA, Arnautovic KI, Rahman S, Ceola W. Inside-outside technique for posterior occiptocervical spine instrumentation and stabilization: preliminary results.J Neurosurg Spine. 1999;90:1–7.

    CAS  Google Scholar 

  9. Doyle JS, Lauerman WC, Wood KB, Krause DR. Complications and long-term outcome of upper cervical spine arthrodesis in patients with Down syndrome.Spine. 1996;21:1223–1231.

    Article  PubMed  CAS  Google Scholar 

  10. Dickman CA, Crawford NR, Paramore CG. Biomechanical characteristics of C1-2 cable fixations.J Neurosurg. 1996;85:316–322.

    PubMed  CAS  Google Scholar 

  11. Dwyer AF. Direct current stimulation in spinal fusion.Med J Aust. 1974;1:73–75.

    PubMed  CAS  Google Scholar 

  12. Dwyer AF. The use of electrical current stimulation in spinal fusion.Ortho Clin North Am. 1975;6:265.

    CAS  Google Scholar 

  13. Kane WJ. Direct current electrical bone growth stimulation for spinal fusion.Spine. 1988;13: 363–365.

    Article  PubMed  CAS  Google Scholar 

  14. Lee K. Clinical investigation of the spinal stim system, open-trial phase: pseudarthrosis stratum. Presented at: 56th Annual Meeting of the AAOS; Las Vegas, Nevada; February 9–14, 1989.

  15. Mammi GI, Rocchi R. Effect of electromagnetic fields on spinal fusion: a prospective study with a control group. In: Blank M, ed.Electricity and Magnetism in Biology and Medicine. San Francisco, Calif: San Francisco Press Inc; 1993:800–802.

    Google Scholar 

  16. Mooney V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions.Spine. 1990;15:708–712.

    Article  PubMed  CAS  Google Scholar 

  17. Savini R, DiSilvestre M, Gargiulo G, Bettini N. The use of pulsing electromagnetic fields in posterolateral lumbosacral spinal fusions.Journal of Electricity. 1990;9:9–17.

    Google Scholar 

  18. Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields.Clin Orthop. 1985;183:127–132.

    Google Scholar 

  19. Simmons JW, Hayes MA, Christensen KD, Dwyer AP, Koulisis CW. The effect of post-operative pulsing electromagnetic fields on lumbar fusion: an open trial phase. Presented at: 4th Annual Meeting of the North American Spine Society, Quebec, Canada; June 29–July 2, 1989.

  20. Grottkau B, Lipson SJ. A controlled pilot study to determine the effect of direct current (DC) stimulation on fusion mass in lumbar spine fusion patients. Presented at: 10th Annual Meeting of the North American Spine Society; Washington, DC; October 18–21, 1995.

  21. Guizzardi S, DiSilvestre M, Govoni P, Scandroglio R. Pulsed electromagnetic field stimulation on posterior spinal fusions.J Spinal Disord. 1994;7:36–40.

    PubMed  CAS  Google Scholar 

  22. Kant AP. An analysis of the effect of electrical stimulation as an adjunct to lumbar spinal fusion: a retrospective controlled study of implantable direct current stimulation in lumbar spine fusion. Presented at: 10th Annual Meeting of the North American Spine Society; Washington, DC; October 18–21, 1995.

  23. Kucharzyk DW. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high-risk spinal fusion population.Spine. 1999;24:465–469.

    Article  PubMed  CAS  Google Scholar 

  24. Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions.Spine. 1994;19:2393–2398.

    Article  PubMed  CAS  Google Scholar 

  25. Pettine KA. A retrospective controlled study of implantable direct current stimulation in lumbar spinal fusion. Presented at: 10th Annual Meeting of the North American Spine Society; Washington, DC; October 18–21, 1995.

  26. Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spine fusion.Spine. 1996;21:2479–2483.

    Article  PubMed  CAS  Google Scholar 

  27. Tejano NA, Puno R, Ignacio JMF. The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. A prospective clinical and radiographic evaluation with long-term follow-up.Spine. 1996;21:1904–1908.

    Article  PubMed  CAS  Google Scholar 

  28. Smith MD. Surgical management of cervical spondylotic myelopathy, part 2: posterior cervical fixation. In: Welch WC, Jacobs GB, Jackson RP, eds.Operative Spinal Surgery. Stamford, Conn: Appleton & Lange; 1999:142–152.

    Google Scholar 

  29. Moller AR. Preoperative and intraoperative neurophysiologic recordings. In: Welch WC, Jacobs GB, Jackson RP, eds.Operative Spine Surgery. Stamford, Conn: Appleton & Lange; 1999:78–95.

    Google Scholar 

  30. MacKenzie AI, Uttley D, Marsh HT, Bell BA. Craniocervical stabilization using Luque/Hartshill rectangles.Neurosurgery. 1990;26:32–36.

    Article  PubMed  CAS  Google Scholar 

  31. Greene KA, Dickman CA, Marciano FF, Drabier JB, Hadley MN, Sonntag VKH. Acute axis fractures: analysis of management and outcome in 340 consecutive cases.Spine. 1997;22:1843–1852.

    Article  PubMed  CAS  Google Scholar 

  32. Polin RS, Szabo T, Bogaev CA, Replogle RE, Jane JA. Nonoperative management of types II and III odontoid fractures: the Philadelphia collar versus the halo vest.Neurosurgery. 1996;38: 450–457.

    Article  PubMed  CAS  Google Scholar 

  33. Brooks AL, Jenkins EB. Atlantoaxial arthrodedesis by the wedge compression method.J Bone Joint Surg Am. 1978;60:279–284.

    PubMed  CAS  Google Scholar 

  34. Griswold DM, Albright JA, Schiffman E, Johnson R, Southwick WO. Atlantoaxial fusion for instability.J Bone Joint Surg Am. 1978;60:285–292.

    PubMed  CAS  Google Scholar 

  35. Holmes JC, Hall JE. Fusion for instability and potential instability in children and adolescents.Orthop Clin North Am. 1978;9:923–943.

    PubMed  CAS  Google Scholar 

  36. Madawi AA, Casey ATH, Solanki GA, Tuite G, Veres R, Crockard HA. Radiological and anatomic evaluation of the atlantoaxial transarticular screw fixation technique.J Neurosurg. 1997;86: 961–968.

    PubMed  CAS  Google Scholar 

  37. McGraw RW, Rusch RM. Atlanto-axial arthrodesis.J Bone Joint Surg Br. 1973;55:482–489.

    PubMed  CAS  Google Scholar 

  38. Roy L, Gibson DA. Cervical spine fusions in children.Clin Orthop. 1970;73:146–151.

    PubMed  CAS  Google Scholar 

  39. Sherk HH, Snyder B. Posterior fusions of the upper cervical spine. Indications, techniques and prognosis.Orthop Clin North Am. 1978;9:1091–1099.

    PubMed  CAS  Google Scholar 

  40. Smith MD, Phillips WA, Hensinger RN. Complications of fusions to the upper cervical spine.Spine. 1991;16:702–705.

    Article  PubMed  CAS  Google Scholar 

  41. Stillerman CB, Wilson JA. Atlanto-axial stabilization with posterior transarticular screw fixation: technical description and report of 22 cases.Neurosurgery. 1993:32:948–955.

    Article  PubMed  CAS  Google Scholar 

  42. Coyne TJ, Fehlings MG, Wallace MC, Bernstein M, Tator CH. C1-2 posterior cervical fusion: long-term evaluation of results and efficacy.Neurosurgery. 1995;37:688–693.

    Article  PubMed  CAS  Google Scholar 

  43. Paramore CG, Dickman CA, Sonntag VKH. The anatomic suitability of the C1-2 complex for transarticular screw fixation.J Neurosurg. 1996;85:221–224.

    Article  PubMed  CAS  Google Scholar 

  44. Brown CW, Orme TJ, Richardson HD. The rate of pseudarthrosis (surgical nonunion) in patients who are smokers and patients who are non-smokers: a comparison study.Spine. 1986;11:942–943.

    Article  PubMed  CAS  Google Scholar 

  45. Baranowski TJ, Black J. The mechanism of faradic stimulation of osteogenesis. In: Blank M, Findl E, eds.Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. New York, NY: Plenum Press; 1987:399.

    Google Scholar 

  46. Bassett CAL, Pawluk RJ, Becker R. Effects of electric current on bone in vivo.Nature. 1964; 204:652.

    Article  PubMed  CAS  Google Scholar 

  47. Bassett CAL, Pawlik RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields (PEMF).Science. 1974;184:575–577.

    Article  PubMed  CAS  Google Scholar 

  48. Black J, Baranowski TJ Jr, Brighton CT. Electrochemical aspects of DC stimulation of osteogenesis.Bioelectrochem Bioenerg. 1984;12:323.

    Article  CAS  Google Scholar 

  49. Black J, Brighton CT. Mechanisms of stimulation of osteogenesis by direct current. In: Brighton CT, Black J, Pollock SR, eds.Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. New York, NY: Grune & Stratton; 1979:215.

    Google Scholar 

  50. Brighton CT, Adler S, Black J, Itada N, Friedenberg ZB. Cathodic oxygen consumption and electrically induced osteogenesis.Clin Orthop. 1975;107:277.

    Article  PubMed  CAS  Google Scholar 

  51. Brighton CT, Friedenberg ZB. Electrical stimulation and oxygen tension.Annals NY Acad Sci. 1974;238:314.

    Article  CAS  Google Scholar 

  52. Brighton CT, Friedenberg ZB, Black J, Esterhai JL, Mitchel JE, Montique F. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed.Clin Orthop. 1981;161:122–132.

    PubMed  Google Scholar 

  53. Friedenberg ZB, Andrews ET, Smolenski B, Perl BW, Brighton CT. Bone reactions to varying amounts of direct current.Surg Gyn Obstet. 1970;131:894.

    CAS  Google Scholar 

  54. Friedenberg ZB, Zemsky LM, Pollis RP, Brighton CT. The response of non-traumatized bone to direct current.J Bone Joint Surg. 1974;56A:1023.

    Google Scholar 

  55. Hotta SS. Electrical bone-growth stimulation and spinal fusion.Health Technology Review. Agency for Health Care Policy and Research, Office of Health Technology Assessment. January 1994:8. AHCPR Publication 94-0014.

  56. Ito M, Fay Y, Edwards WT, Huan HA. The effect of pulsed electromagnetic fields on posterolateral fusions and device related osteopenia. Presented at: 21st Annual Meeting of the International Society for the Study of the Lumbar Spine; Seattle, Washington; June 21–25, 1994.

  57. Kahanovitz N, Arnoczky S. The efficacy of direct current electrical stimulation to enhance canine spinal fusions.Clin Orthop. 1990;251:295–299.

    PubMed  Google Scholar 

  58. Kahanovitz N, Arnoczky SP, Hulse D, Shires PK. The effect of postoperative electromagnetic pulsing on canine posterior spinal fusions.Spine. 1984;9:273–279.

    Article  PubMed  CAS  Google Scholar 

  59. Kahanovitz N, Arnoczky SP, Nemzek J, Shores A. The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs.Spine. 1994;19:705–709.

    Article  PubMed  CAS  Google Scholar 

  60. Kahanovitz N, Pashos CL. The role of implantable direct current stimulation in the critical pathway for lumbar spinal fusion. Presented at: 11th Annual Meeting of the North American Spine Society; Vancouver, Canada; October 23–26, 1996.

  61. Urban MA, Brighton CT and Black J. Dose response relationship for faradic stimulation of osteogenesis in the rabbit tibia by use of a single-strand platinum cathode. In: Brighton CT, Pollock SR, eds.Electromagnetics in Biology and Medicine. San Francisco, Calif: San Francisco Press Inc; 1991:199.

    Google Scholar 

  62. Yasuda I. Electrical callus and callus formation by electret.Clin Orthop. 1977;124:53–56.

    PubMed  Google Scholar 

  63. Yasuda I, Noguchi K, Sata T. Dynamic callus and electric callus.J Bone Joint Surg. 1955;37A:1292.

    Google Scholar 

  64. Fukada E, Yasuda I. On the piezoelectric effect of bone.J Phy Soc Japan. 1957;12:1158.

    Article  Google Scholar 

  65. Luben RA. Effects of low energy electromagnetic fields (EMF) on signal transduction by G protein-linked receptors. In: Blank M, ed.Electricity and Magnetism in Biology and Medicine. San Francisco, Calif: San Francisco Press Inc; 1993:57–62.

    Google Scholar 

  66. Nerubay J, Marganit B, Bubis J, Tadmor A, Katznelson A. Stimulation of bone formation by electrical current on spinal fusion.Spine. 1986;11:167–169.

    Article  PubMed  CAS  Google Scholar 

  67. Polk C. Electric and magnetic fields for bone and soft tissue repair. In: Polk C, Poston E, eds.Handbook of Biological Effects of Electromagnetic Fields. 2nd ed. New York, NY: CRC Press; 1996: 231–246.

    Google Scholar 

  68. Simon SR. Bone injury, regeneration, and repair. In: Simon SR, ed.Orthopedic Basic Science. Rosemont, Ill: American Academy of Orthopedic Surgeons; 1994:312–316.

    Google Scholar 

  69. Zichner L. Repair of nonunions by electrically pulsed current stimulation.Clin Orthop. 1981; 161:115–121.

    PubMed  Google Scholar 

  70. Oishi M, Onesti ST. Electrical bone graft stimulation for spinal fusion: a review.Neurosurgery. 2000;47:1041–1056.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, W.C., Willis, S.L. & Gerszten, P.C. Implantable direct current stimulation in para-axial cervical arthrodesis. Adv Therapy 21, 389–400 (2004). https://doi.org/10.1007/BF02850103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02850103

Keywords

Navigation