Skip to main content

Bone Grafting and Spinal Fusion Options

  • Chapter
  • First Online:
Essentials of Spinal Stabilization

Abstract

Bone grafting materials are the core element of spine fusion, providing the environment for solid bone formation between two vertebrae. Ideal bone graft is osteoconductive, osteoinductive, and osteogenic. All grafting materials can be divided into three main groups: autologous, allograft, and graft substitutes (extenders, enhancers, or substitutes). Autogenous iliac crest bone graft is the only graft that possesses all components needed for bone formation. However, autogenous bone grafts are often limited in quantity and its harvest is associated with complications. Allograft bone is obtained from cadaver tissues and has osteoconductive and minimal osteoinductive properties. It comes in various shapes and forms with the main disadvantages being mechanical properties and potential for disease transmission. Bone substitutes include demineralized bone matrix (DBM), ceramics, osteoinductive proteins, autologous platelet concentrate, and bone marrow aspirates. The right choice of bone strongly depends on the patient’s risk factors, type of fusion, and number of levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.

    Article  PubMed Central  Google Scholar 

  2. Chun DS, Baker KC, Hsu WK. Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39(4):E10.

    Article  PubMed  Google Scholar 

  3. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudarthrosis. Global Spine J. 2015;5(2):148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raizman NM, O'Brien JR, Poehling-Monaghan KL, Yu WD. Pseudarthrosis of the spine. J Am Acad Orthop Surg. 2009;17(8):494–503.

    Article  PubMed  Google Scholar 

  5. Muschler GF, Takigami H, Nakamoto C. Principles of bone fusion. In: Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA, editors. Rothman-Simeone the spine. 5th ed. Philadelphia: Elsevier Saunders; 2006. p. 385–98.

    Google Scholar 

  6. Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. Eur Spine J. 2009;18(6):783–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am. 1999;30(4):685–98.

    Article  CAS  PubMed  Google Scholar 

  8. Zermatten P, Wettstein M. Iliac wing fracture following graft harvesting from the anterior iliac crest: literature review based on case report. Orthop Traumatol Surg Res. 2012;98(1):114–7.

    Article  CAS  PubMed  Google Scholar 

  9. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227–36.

    Article  PubMed  Google Scholar 

  10. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of the iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.

    Article  Google Scholar 

  11. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res. 1997;339:76–81.

    Article  Google Scholar 

  12. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  PubMed  Google Scholar 

  13. Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999;30(4):543–52.

    Article  CAS  PubMed  Google Scholar 

  14. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herkowitz HN, Kurz LT. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. J Bone Joint Surg Am. 1991;73(6):802–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. 1997 Volvo award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976). 1997;22(24):2807–12.

    Article  CAS  Google Scholar 

  17. Kornblum MB, Fischgrund JS, Herkowitz HN, Abraham DA, Berkower DL, Ditkoff JS. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine (Phila Pa 1976). 2004;29(7):726–33.

    Article  Google Scholar 

  18. Song KJ, Kim GH, Choi BY. Efficacy of PEEK cages and plate augmentation in three-level anterior cervical fusion of elderly patients. Clin Orthop Surg. 2011;3(1):9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burwell RG. The fate of bone grafts. In: Apley AG, editor. Recent advances in orthopaedics. London: Churchill Livingstone; 1969. p. 115–207.

    Google Scholar 

  20. Enneking WF, Burchardt H, Puhl JJ, Piotrowski G. Physical and biological aspects of repair in dog cortical-bone transplants. J Bone Joint Surg Am. 1975;57(2):237–52.

    Article  CAS  PubMed  Google Scholar 

  21. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.

    Article  PubMed  Google Scholar 

  22. Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976). 1984;9(7):667–71.

    Article  CAS  Google Scholar 

  23. Krag MH, Robertson PA, Johnson CC, Stein AC. Anterior cervical fusion using a modified tricortical bone graft: a radiographic analysis of outcome. J Spinal Disord. 1997;10(5):420–30.

    Article  CAS  PubMed  Google Scholar 

  24. Mutoh N, Shinomiya K, Furuya K, Yamaura I, Satoh H. Pseudarthrosis and delayed union after anterior cervical fusion. Int Orthop. 1993;17(5):286–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zdeblick TA, Ducker TB. The use of freeze-dried allograft bone for anterior cervical fusions. Spine (Phila Pa 1976). 1991;16(7):726–9.

    Article  CAS  Google Scholar 

  26. Wright IP, Eisenstein SM. Anterior cervical discectomy and fusion without instrumentation. Spine (Phila Pa 1976). 2007;32(7):772–4.

    Article  Google Scholar 

  27. Samartzis D, Shen FH, Matthews DK, Yoon ST, Goldberg EJ, An HS. Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J. 2003;3(6):451–9.

    Article  PubMed  Google Scholar 

  28. Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg Am. 1992;74:939–50.

    Article  CAS  PubMed  Google Scholar 

  29. Hamer AJ, Strachan JR, Black MM, et al. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: a comparison of fresh, freshfrozen, and irradiated bone. J Bone Joint Surg Br. 1996;78:363–8.

    CAS  PubMed  Google Scholar 

  30. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am. 1995;77:1742–54.

    Article  CAS  PubMed  Google Scholar 

  31. Mroz TE, Joyce MJ, Lieberman IH, Steinmetz MP, Benzel EC, Wang JC. The use of allograft bone in spine surgery: is it safe? Spine J. 2009;9(4):303–8.

    Article  PubMed  Google Scholar 

  32. Cloward RB. The anterior approach for removal of ruptured cervical discs. J Neurosurg. 1958;15:602.

    Article  CAS  PubMed  Google Scholar 

  33. Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin Orthop. 1976;119:231–6.

    Google Scholar 

  34. Jagannathan J, Shaffrey CI, Oskouian RJ, Dumont AS, Herrold C, Sansur CA, Jane JA. Radiographic and clinical outcomes following single-level anterior cervical discectomy and allograft fusion without plate placement or cervical collar. J Neurosurg Spine. 2008;8(5):420–8.

    Article  PubMed  Google Scholar 

  35. Young WF, Rossenwasser RH. An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine. 1993;18:1123–4.

    Article  CAS  PubMed  Google Scholar 

  36. Kozak JA, Heilman AE, O’Brian JP. Anterior lumbar fusion options: techniques and graft materials. Clin Orthop. 1994;300:45–51.

    Google Scholar 

  37. Thalgott JS, Fogarty ME, Giuffre JM, Christenson SD, Epstein AK, Aprill C. A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine (Phila Pa 1976). 2009;34(12):1251–6.

    Article  Google Scholar 

  38. Butterman GR, Glazer PA, Hu SS, Bradford DS. Revision of failed lumbar fusions. A comparison of anterior autograft and allograft. Spine. 1997;22:2748–55.

    Article  Google Scholar 

  39. Jones KC, Andrish J, Kuivila T, Gurd A. Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop. 2002;22(3):285–9.

    PubMed  Google Scholar 

  40. Knapp DR Jr, Jones ET, Blanco JS, Flynn JC, Price CT. Allograft bone in spinal fusion for adolescent idiopathic scoliosis. J Spinal Disord Tech. 2005;18(Suppl):S73–6.

    Article  PubMed  Google Scholar 

  41. Tay BK, Patel VV, Bradford DS. Calcium sulfate and calcium phosphate- based bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am. 1999;30:615–23.

    Article  CAS  PubMed  Google Scholar 

  42. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981;157:259–78.

    CAS  Google Scholar 

  43. Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, Park JB, Tim Yoon S, Wang JC. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;27:1–8. [Epub ahead of print]

    Google Scholar 

  44. Lee JH, Hwang CJ, Song BW, Koo KH, Chang BS, Lee CK. A prospective consecutive study of instrumented posterolateral lumbar fusion using synthetic hydroxyapatite (BongrosHA) as a bone graft extender. J Biomed Mater Res A. 2009;90:804–10.

    Article  PubMed  CAS  Google Scholar 

  45. Hsu CJ, Chou WY, Teng HP, Chang WN, Chou YJ. Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posterolateral fusion. J Neurosurg Spine. 2005;3:271–5.

    Article  PubMed  Google Scholar 

  46. Acharya NK, Kumar RJ, Varma HK, Menon VK. Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech. 2008;21:106–11.

    Article  PubMed  Google Scholar 

  47. Yoshii T, Yuasa M, Sotome S, Yamada T, Sakaki K, Hirai T, Taniyama T, Inose H, Kato T, Arai Y, Kawabata S, Tomizawa S, Enomoto M, Shinomiya K, Okawa A. Porous/dense composite hydroxyapatite for anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2013;38(10):833–40.

    Article  Google Scholar 

  48. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine (Phila Pa 1976). 2008;33:1299–304.

    Article  Google Scholar 

  49. Kong S, Park JH, Roh SW. A prospective comparative study of radiological outcomes after instrumented posterolateral fusion mass using autologous local bone or a mixture of beta-tcp and autologous local bone in the same patient. Acta Neurochir (Wien). 2013;155:765–70.

    Article  Google Scholar 

  50. Moro-Barrero L, Acebal-Cortina G, SuĂ¡rez-SuĂ¡rez M, PĂ©rez-Redondo J, Murcia-MazĂ³n A, LĂ³pez-Muñiz A. Radiographic analysis of fusion mass using fresh autologous bone marrow with ceramic composites as an alternative to autologous bone graft. J Spinal Disord Tech. 2007;20:409–15.

    Article  PubMed  Google Scholar 

  51. Neen D, Noyes D, Shaw M, Gwilym S, Fairlie N, Birch N. Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing Healos with autograft. Spine (Phila Pa 1976). 2006;31:E636–40.

    Article  Google Scholar 

  52. Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol. 2005;63:497504.

    Article  Google Scholar 

  53. Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion: preliminary results in 40 patients. Can J Surg. 2001;44:262–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen WJ, Tsai TT, Chen LH, Niu CC, Lai PL, Fu TS, McCarthy K. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine (Phila Pa 1976). 2005;30:2293–7.

    Article  Google Scholar 

  55. Niu CC, Tsai TT, Fu TS, Lai PL, Chen LH, Chen WJ. A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine (Phila Pa 1976). 2009;34:2715–9.

    Article  Google Scholar 

  56. Licina P, Coughlan M, Johnston E, Pearcy M. Comparison of silicate-substituted calcium phosphate (Actifuse) with recombinant human bone morphogenetic protein-2 (infuse) in posterolateral instrumented lumbar fusion. Global Spine J. 2015;5(6):471–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nandyala SV, Marquez-Lara A, Fineberg SJ, Pelton M, Singh K. Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2014;39(3):185–91.

    Article  Google Scholar 

  58. Salih E, Wang J, Mah J, Fluckiger R. Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J. 2002;364(Pt 2):465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blum B, Moseley J, Miller L, Richelsoph K, Haggard W. Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics. 2004;27(1 Suppl):s161–5.

    PubMed  Google Scholar 

  60. Lee YP, Jo M, Luna M, Chien B, Lieberman JR, Wang JC. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech. 2005;18:439–44.

    Article  PubMed  Google Scholar 

  61. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86-A:2243–50.

    Article  PubMed  Google Scholar 

  62. Wang JC, Alanay A, Mark D, Kanim LE, Campbell PA, Dawson EG, Lieberman JR. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J. 2007;16:1233–40.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Choi Y, Oldenburg FP, Sage L, Johnstone B, Yoo JU. A bridging demineralized bone implant facilitates posterolateral lumbar fusion in New Zealand white rabbits. Spine. 2007;32:36–41.

    Article  PubMed  Google Scholar 

  64. Louis-Ugbo J, Murakami H, Kim HS, Minamide A, Boden SD. Evidence of osteoinduction by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine. 2004;29:360–6.

    Article  PubMed  Google Scholar 

  65. Martin GJ Jr, Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine. 1999;24:637–45.

    Article  PubMed  Google Scholar 

  66. Girardi FP, Cammisa FP Jr. The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics. 2003;26:s545–8.

    PubMed  Google Scholar 

  67. Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000;23:1059–64.

    CAS  PubMed  Google Scholar 

  68. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine. 2004;29:660–6.

    Article  PubMed  Google Scholar 

  69. Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics. 2007;30:567–70.

    PubMed  Google Scholar 

  70. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine. 1995;20:2211–6.

    Article  CAS  PubMed  Google Scholar 

  71. Park HW, Lee JK, Moon SJ, Seo SK, Lee JH, Kim SH. The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine (Phila Pa 1976). 2009;34(17):E591–5.

    Article  Google Scholar 

  72. Moon HJ, Kim JH, Kim JH, Kwon TH, Chung HS, Park YK. The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir. 2011;153(3):559e65.

    Article  Google Scholar 

  73. Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007;7:50–60.

    Article  PubMed  Google Scholar 

  74. Weiner BK, Walker M. Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine. 2003;28:1968–70.

    Article  PubMed  Google Scholar 

  75. Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine. 2005;30:E243–6.

    Article  PubMed  Google Scholar 

  76. Hee HT, Majd ME, Holt RT, Myers L. Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur Spine J. 2003;12:400–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jenis LG, Banco RJ, Kwon B. A prospective study of autologous growth factors (AGF) in lumbar interbody fusion. Spine J. 2006;6(1):14–20.

    Article  PubMed  Google Scholar 

  78. Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  79. Muschler GF, Boehm CA, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79(11):1699–709.

    Article  CAS  PubMed  Google Scholar 

  80. Taghavi CE, Lee KB, Keorochana G, Tzeng ST, Yoo JH, Wang JC. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine (Phila Pa 1976). 2010;35(11):1144–50.

    Article  Google Scholar 

  81. Khashan M, Inoue S, Berven SH. Cell based therapies as compared to autologous bone grafts for spinal arthrodesis. Spine (Phila Pa 1976). 2013;38(21):1885–91.

    Article  Google Scholar 

  82. Urist MR. Bone: formation by auto induction. Science. 1965;150:893–9.

    Article  CAS  PubMed  Google Scholar 

  83. Wozney JM. Overview of bone morphogenetic proteins. Spine (Phila Pa 1976). 2002;27:S2–8.

    Article  Google Scholar 

  84. Graff JM, Bansal A, Melton DA. Xenopus MAD proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996;85:479–87.

    Article  CAS  PubMed  Google Scholar 

  85. Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial. Spine. 2002;27:2662–73.

    Article  PubMed  Google Scholar 

  86. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15:337–49.

    Article  PubMed  Google Scholar 

  87. Ong KL, Villarraga ML, Lau E, et al. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine. 2010;35:1794–800.

    Article  PubMed  Google Scholar 

  88. Bozic K. ORS clinical research forum, AAOS meeting 2/6/12.

    Google Scholar 

  89. FDA Public Health Notification. Life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion, issued July 1, 2008.

    Google Scholar 

  90. Mroz TE, Wang JC, Hashimoto R, et al. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35:S86–S104.

    Article  PubMed  Google Scholar 

  91. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11:471–91.

    Article  PubMed  Google Scholar 

  92. Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.

    Article  PubMed  Google Scholar 

  93. Simmonds MC, Brown J, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion. Ann Intern Med. 2013;158(12):877–89.

    Article  PubMed  Google Scholar 

  94. Huang J-W, Lin S-S, Chen L-H, et al. The use of fluorescence-labeled mesenchymal stem cells in poly(lactideco-glycolide)/hydroxyapatite/collagen hybrid graft as a bone substitute for posterolateral spinal fusion. J Trauma. 2011;70(6):1495–502.

    Article  CAS  PubMed  Google Scholar 

  95. Abbah SA, Lam CX, Ramruttun AK, Goh JC, Wong H-K. Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow derived multipotent stromal cells in biodegradable scaffolds: a comparative study in a large animal model of anterior lumbar interbody fusion. Spine. 2011;36(21):1752–9.

    Article  PubMed  Google Scholar 

  96. Lopez MJ, McIntosh KR, Spencer ND, et al. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. J Orthop Res. 2009;27(3):366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am. 2003;85-A(5):905–11.

    Article  PubMed  Google Scholar 

  98. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y, Sintuu C, Wang JC. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine (Phila Pa 1976). 2008;33(8):863–9.

    Article  Google Scholar 

  99. Nakajima T, Iizuka H, Tsutsumi S, Kayakabe M, Takagishi K. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation. Spine. 2007;32(22):2432–6.

    Article  PubMed  Google Scholar 

  100. Barba M, Cicione C, Bernardini C, Campana V, Pagano E, Michetti F, Logroscino G, Lattanzi W. Spinal fusion in the next generation: gene and cell therapy approaches. ScientificWorldJournal. 2014;2014:406159. doi:10.1155/2014/406159. eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  101. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6(2):81–9. doi:10.1111/os.12098.

    Article  PubMed  Google Scholar 

  102. Ramakrishna SMJ, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica Buser PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Buser, Z., Jakoi, A., Katbamna, B., Basho, R., Wang, J.C. (2017). Bone Grafting and Spinal Fusion Options. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics