Skip to main content
Log in

Finding chaos in experimental time series: The case of two-phase flow

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

This paper focuses on a method proposed for diagnosing the presence of chaotic behaviour in physical systems directly from experimental time series. The procedure relies on the concept of short-term predictability of chaotic motions. From a statistical point of view, it is completely non-parametric and works whatever the distribution function of the data points may be. The method is robust to observational noise, and can distinguish merely linear stochastic processes,e.g., fractional Brownian motion, from truly non-linear deterministic systems. The capability of the method has been evaluated by applying it to intermittent gas-liquid flows in a horizontal pipe. A weak sign of deterministic chaos has been diagnosed in plug and slug flow regimes. Our analysis fully confirms the Ruelle-Takens view about the complexity in hydrodynamical systems. However, the weak sign of chaos is in contrast with the Lorenz type systems (strong chaos) and supports the idea of Kolmogorov about irregular motion in hydrodynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Packard N. H., Cructchfield J. P., Farmer J. D. andShaw R. S.,Phys. Rev. Lett.,45 (1980) 712.

    Article  ADS  Google Scholar 

  2. Takens F.,Dynamical Systems and Turbulence, edited byD. A. Rand andL. S. Young (Springer-Verlag, Berlin) 1981.

    Google Scholar 

  3. Grassberger P. andProcaccia I.,Physica D,9 (1983) 189.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Mayer-Kress G. (Editor),Dimension and Entropies in Chaotic Systems (Springer-Verlag, New York, N.Y.) 1985.

    Google Scholar 

  5. Fowler A. C. andKember G.,Phys. Lett. A,175 (1993) 402.

    Article  MathSciNet  ADS  Google Scholar 

  6. Malinetski G. G., Potapov A. B., Rakhmanov A. I. andRodichev E. B.,Phys. Lett. A,179 (1993) 15.

    Article  ADS  Google Scholar 

  7. Mandebrolt B. B.,The Fractal Geometry of Nature (Freeman, San Francisco) 1982.

    Google Scholar 

  8. Voss R. F.,Physica D,38 (1989) 362.

    Article  MathSciNet  ADS  Google Scholar 

  9. Serio C.,Nuovo Cimento B,107 (1992) 681.

    Article  MathSciNet  ADS  Google Scholar 

  10. Serio C.,Fractal 93: Fractals in the Natural and Applied Sciences, edited byM. M. Novak (Elsevier Science B. V. (North-Holland)) 1994, pp. 371–383.

  11. Serio C.,Europhys. Lett.,27 (1994) 103.

    Article  ADS  Google Scholar 

  12. Cuomo V., Serio C., Crisciani V. andFerraro A.,Tellus A,46 (1994) 299.

    Article  ADS  Google Scholar 

  13. Farmer J. D. andSidorowich J. J.,Phys. Rev. Lett.,59 (1987) 845.

    Article  MathSciNet  ADS  Google Scholar 

  14. Sugihara G. andMay R. M.,Nature,344 (1990) 734.

    Article  ADS  Google Scholar 

  15. Casdagli M.,J. R. Statist. Soc. B,54 (1991) 303.

    MathSciNet  Google Scholar 

  16. Kennel M. B. andIsabelle S.,Phys. Rev. A,6 (1992) 3111.

    Article  ADS  Google Scholar 

  17. Mao Z. S. andDukler A. E.,Int. J. Multiphase Flow,19 (1993) 377.

    Article  MATH  Google Scholar 

  18. Hewitt G. F. andJayanti S.,Int. J. Multiphase Flow,19 (1993) 527.

    Article  MATH  Google Scholar 

  19. Ruder Z. andHanratty T. J.,Int. J. Multiphase Flow,16 (1990) 233.

    Article  MATH  Google Scholar 

  20. Drahoš J., Ebner L., Bradka F., Fialova M. andČermak J.,Proceedings of the International Conference on the Mechanics of Two-Phase Flows, National Taiwan University, Taipei 1989 (National Taiwan University, Taipei) 1989, pp. 351–355.

    Google Scholar 

  21. Box G. E. P. andJenkins G. M.,Time Series Analysis (Holden-Day, S. Francisco) 1976.

    MATH  Google Scholar 

  22. Ventsel A. D.,Teoria dei processi stocastici (Editori Riuniti, Edizioni MIR, Roma) 1983.

    MATH  Google Scholar 

  23. Bartlett M. S.,An Introduction to Stochastic Processes, with Special Reference to Methods and Applications (Cambridge University Press, Cambridge) 1955.

    MATH  Google Scholar 

  24. Drahoš J., Čermak J., Selucký K. andEbner L.,Chem. Eng. Process.,22 (1987) 45.

    Article  Google Scholar 

  25. Nydal O. J., Pintus S. andAndreussi P.,Int. J. Multiphase Flow,18 (1992) 439.

    Article  MATH  Google Scholar 

  26. Ruelle D. andTakens F.,Commun. Math. Phys.,20 (1971) 167.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Lorenz E. N.,J. Atmosph. Sci.,20 (1963) 130.

    Article  ADS  Google Scholar 

  28. Arnol’d V. I.,Kolmogorov’s hydrodynamic attractors, in Turbulence and Stochastic Processes, edited byJ. C. R. Hunt,O. M. Phillips andD. Williams (The Royal Society, London) 1991, pp. 19–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drahoš, J., Punčochář, M., Nino, E. et al. Finding chaos in experimental time series: The case of two-phase flow. Il Nuovo Cimento B 110, 1415–1428 (1995). https://doi.org/10.1007/BF02849840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02849840

PACS

PACS

PACS

Navigation