Skip to main content
Log in

Electronegativity and hardness profiles of a chemical process: Comparison between quantum fluid density functional theory andab initio SCF method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Temporal evolution of electronegativity and hardness associated with a collision process between a Be atom and a proton has been studied within a quantum fluid density functional framework. In the presence of a third collisional partner to take away excess energy, this collision may lead to a chemical reaction producing a BeH+ molecule. For comparisonab initio SCF level calculation (with 6–31G** basis set) on BeH+ molecule with different geometries have been performed. Electronegativity equalization and maximum hardness principles are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L Pauling,The nature of the chemical bond (Cornell Univ. Press, Ithaca, New York, 1960) p. 88

    Google Scholar 

  2. R P Iczkowski and J L Margrave,J. Am. Chem. Soc. 83, 3547 (1961)

    Article  Google Scholar 

  3. R G Parr, R A Donnelly, M Levy and W E Palke,J. Chem. Phys. 68, 3801 (1978)

    Article  ADS  Google Scholar 

  4. K D Sen and C K Jørgensen eds.,Electronegativity, structure and bonding, (Springer, Heidelberg, 1987) Vol. 66

    Google Scholar 

  5. R G Pearson,J. Am. Chem. Soc. 85, 3533 (1963)

    Article  Google Scholar 

  6. R G Parr and R G Pearson,J. Am. Chem. Soc. 105, 7512 (1983)

    Article  Google Scholar 

  7. R G Parr and W Yang,Density functional theory of atoms and molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  8. K D Sen and D M P Mingos eds.,Chemical hardness, structure and bonding, (Springer-Verlag, Berlin, 1992) Vol. 80

    Google Scholar 

  9. P K Chattaraj and R G Parr in reference 8

    Google Scholar 

  10. P K Chattaraj,J. Indian Chem. Soc. 69, 173 (1992)

    Google Scholar 

  11. R G Pearson,Proc. Natl. Acad. Sci. USA,83, 8440 (1986)

    Article  ADS  Google Scholar 

  12. R T Sanderson,Science 114, 670 (1951);116, 41 (1952);121, 207 (1955)

    Article  ADS  Google Scholar 

  13. R T Sanderson,J. Chem. Educ. 29, 539 (1952);31, 238 (1954)

    Google Scholar 

  14. R A Donnelly and R G Parr,J. Chem. Phys. 69, 4431 (1978)

    Article  ADS  Google Scholar 

  15. P Politzer and H Weinstein,J. Chem. Phys. 71, 4218 (1979)

    Article  ADS  Google Scholar 

  16. R G Parr and L Bartolotti,J. Am. Chem. Soc. 104, 3801 (1982)

    Article  Google Scholar 

  17. P K Chattaraj, H Lee and R G Parr,J. Am. Chem. Soc. 113, 1855 (1991)

    Article  Google Scholar 

  18. R G Pearson,J. Chem. Educ. 64, 561 (1987)

    Article  Google Scholar 

  19. R G Parr and P K Chattaraj,J. Am. Chem. Soc. 113, 1854 (1991)

    Article  Google Scholar 

  20. R G Parr and J L Gázquez,J. Phys. Chem. 97, 3939 (1993)

    Article  Google Scholar 

  21. P K Chattaraj and S Nath,Int. J. Quantum Chem. 49, 705 (1994)

    Article  Google Scholar 

  22. S Nath, P K Nandi, A B Sannigrahi and P K Chattaraj,J. Mol. Struct. 279, 207 (1993)

    Google Scholar 

  23. R G Pearson and W E Palke,J. Phys. Chem. 96, 3283 (1992)

    Article  Google Scholar 

  24. D Datta,Inorg. Chem. 31, 2797 (1992)

    Article  Google Scholar 

  25. D Datta,J. Phys. Chem. 96, 2409 (1992)

    Article  Google Scholar 

  26. P K Chattaraj and P v R Schleyer,J. Am. Chem. Soc. 116, 1067 (1994)

    Article  Google Scholar 

  27. M Galván, A D Pino and J D Joannopoulos,Phys. Rev. Lett. 70, 21 (1993)

    Article  ADS  Google Scholar 

  28. A D Pino, M Galván, T A Arias and J D Joannopoulos,J. Chem. Phys. 98, 1606 (1993)

    Article  ADS  Google Scholar 

  29. P K Chattaraj, S Nath and A B Sannigrahi,Chem. Phys. Lett. 212, 223 (1993)

    Article  ADS  Google Scholar 

  30. P K Chattaraj, S Nath and A B Sannigrahi,J. Phys. Chem. 98, 9143 (1994)

    Article  Google Scholar 

  31. P K Chattaraj, and S Nath,Indian J. Chem. A33, 842 (1994)

    Google Scholar 

  32. J L Gázquez, A Martínez and F Méndez,J. Phys. Chem. 97, 4059 (1993)

    Article  Google Scholar 

  33. S Nath, A B Sannigrahi and P K Chattaraj,J. Mol. Struct. 306, 87 (1994)

    Google Scholar 

  34. S Nath, A B Sannigrahi and P K Chattaraj,J. Mol. Struct. 309, 65 (1994)

    Google Scholar 

  35. P K Chattaraj and S Nath,Proc. Indian Acad. Sci. (Chem. Sci.) 106, 229 (1994)

    Google Scholar 

  36. P K Chattaraj and S Nath,Chem. Phys. Lett. 217, 342 (1994)

    Article  ADS  Google Scholar 

  37. S M Read and J T Vanderslice,J. Chem. Phys. 37, 205 (1962)

    Article  ADS  Google Scholar 

  38. K E Banyard and G K Taylor,J. Phys. B8, L137 (1975)

  39. K P Huber and G Herzberg,Molecular spectra and molecular structure, Constants of diatomic molecules (Van Nostrand, New York, 1979) Vol. IV, p. 81

    Google Scholar 

  40. B M Deb and P K Chattaraj,Phys. Rev. A39, 1696 (1989)

    ADS  Google Scholar 

  41. B M Deb and P K Chattaraj,Chem. Phys. Lett. 148, 550 (1988)

    Article  ADS  Google Scholar 

  42. B M Deb, P K Chattaraj and S Mishra,Phys. Rev. A43, 1248 (1991)

    ADS  Google Scholar 

  43. P K Chattaraj,Int. J. Quantum Chem. 41, 845 (1992)

    Article  Google Scholar 

  44. B M Deb and P K Chattaraj, inSolitons: Introduction and application, edited by M Lakshmann (Springer, Berlin, 1988) pp. 11–25

    Google Scholar 

  45. P K Chattaraj inSymmetries and singularity structures: Integrability and chaos in nonlinear dynamical systems, edited by M Lakshmann and M Daniel (Springer-Verlag, Berlin 1990) pp. 172–182

    Google Scholar 

  46. W J Hehre, L Radom, P v R Schleyer and J A Pople,Ab initio molecular orbital theory (Wiley, New York, 1986)

    Google Scholar 

  47. E Runge and E K U Gross,Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  48. A K Dhara and S K Ghosh,Phys. Rev. A35, 442 (1987)

    ADS  Google Scholar 

  49. P Hohenberg and W Kohn,Phys. Rev. B136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  50. P K Chattaraj and B M Deb,J. Sci. Ind. Res. 43, 238 (1984)

    Google Scholar 

  51. For the definition of a similar time-dependent energy quantity in the presence of a harmonic time-dependent perturbation see B M Deb and S K Ghosh,J. Chem. Phys. 77, 342 (1982)

    Article  ADS  Google Scholar 

  52. L J Bartolotti,Phys. Rev. A24, 1661 (1981). See Reference 42 for a general time-dependent situation

    ADS  MathSciNet  Google Scholar 

  53. P Politzer, R G Parr and D R Murphy,J. Chem. Phys. 79, 3859 (1983)

    Article  ADS  Google Scholar 

  54. M Berkowitz, S K Ghosh and R G Parr,J. Am. Chem. Soc. 107, 6811 (1985)

    Article  Google Scholar 

  55. M Berkowitz and R G Parr,J. Chem. Phys. 88, 2554 (1988)

    Article  ADS  Google Scholar 

  56. R G Parr and W Yang,J. Am. Chem. Soc. 106, 4049 (1984)

    Article  Google Scholar 

  57. J L Gázquez, in reference 9

  58. E Clementi and C R Roetti,At. Data Nucl. Data Tables 14, 174 (1974)

    Article  ADS  Google Scholar 

  59. P K Chattaraj, K S Rao and B M Deb,J. Comput. Phys. 72, 504 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. J C Slater,Phys. Rev. 81, 385 (1951)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, S., Chattaraj, P.K. Electronegativity and hardness profiles of a chemical process: Comparison between quantum fluid density functional theory andab initio SCF method. Pramana - J. Phys 45, 65–73 (1995). https://doi.org/10.1007/BF02848099

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02848099

Keywords

PACS Nos

Navigation