Skip to main content
Log in

FBI transforms in Gevrey classes

  • Published:
Journal d’Analyse Mathematique Aims and scope

Abstract

In this work we develop the FBI Transform tools in Gevrey classes. Our goal is to extend to a Gevrey-s obstacle withs < 3 the localization of poles result obtained by Sjöstrand [10] in the analytic class. In that work, the author proved that the pole-free zone is controlled by a constantC 0,a (which was only implicit in Bardos-Lebeau-Rauch [1]), improving the constantC 0, of the results of Hargé-Lebeau [13] and Sjöstrand-Zworski [13] valid in C The works [3], [13] and [10] feature an adapted complex scaling for convex obstacles, but in [10] there is the addition of a small complex “G3 deformation”. The study of such Gevrey deformations for operators with symbols in Gevrey classes is the central point of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bardos, G. Lebeau and J. Rauch,Scattering frequencies and Gevrey 3 singularities, Invent. Math.90(1987), 77–114.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Carleson,On universal moment problems, Math. Scand.6 (1961), 197–206.

    MathSciNet  Google Scholar 

  3. T. Hargé and G. Lebeau,Diffraction par un obstacle convexe, Invent. Math.118 (1994), 161–196.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Hirsch,Differential Topology, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  5. L. Hörmander,The Analysis of Linear Partial Differential Operators, Volumes I, III, IV, Springer-Verlag, Berlin, 1983, 1985.

    Google Scholar 

  6. B. Lascar,Propagation des singularités Gevrey pour des opérateurs hyberboliques, Am. J. Math.110 (1988), 413–449.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Lascar,Propagation des singularités Gevrey pour des problèmes aux limites hyperboliques, Comm. Partial Differential Equations3 (1988), 551–571.

    Article  MathSciNet  Google Scholar 

  8. B. Lascar and R. Lascar,Propagation des singularités Gevrey pour la diffraction, Comm. Partial Differential Equations16 (1991), 547–584.

    Article  MathSciNet  Google Scholar 

  9. A. Melin and J. Sjöstrand,Fourier integral operators with complex valued phase functions, inFourier Integral Operators and Partial Differential Equations, Lecture Notes in Mathematics459, Springer-Verlag, Berlin, 1975, pp. 120–223.

    Chapter  Google Scholar 

  10. J. Sjöstrand,Density of resonances for strictly convex analytic obstacles, Canad. J. Math.48 (1996), 397–447.

    MATH  MathSciNet  Google Scholar 

  11. J. Sjöstrand,Singularités analytiques microlocales. Astérisque95 (1982).

  12. J. Sjöstrand and M. Zworski,Estimates on the number of scattering poles near the real for strictly convex obstacles, Ann. Inst. Fourier43 (1993), 769–790.

    MATH  Google Scholar 

  13. J. Sjöstrand and M. Zworski,The complex scaling method for scattering by strictly convex obstacles. Ark. Math.33 (1995), 135–172.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lascar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lascar, B., Lascar, R. FBI transforms in Gevrey classes. J. Anal. Math. 72, 105–125 (1997). https://doi.org/10.1007/BF02843155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843155

Keywords

Navigation