Skip to main content
Log in

Effect of intestinal cytochrome P450 3A on phytochemical presystemic metabolism

  • Reviews
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Phytochemicals, orally administered substances, are found to undergo presystemic metabolism mainly in the intestine. Although early researches confirmed the role of intestinal bacteria in phytochemical presystemic metabolism, along with the development of molecular biology in investigating intestinal metabolism, a breakthrough has been won in research into metabolizing enzymes and transporters in intestine, which demands more attention and further studies. Recently, Cytochrome P450 3A has been found to be the most effective enzyme in mediating both oxidative (Phase I) and conjugative (Phase II) metabolism in the intestine. The present review summarizes the current findings correlated with the effect of intestinal cytochrome P450 3A on phytochemical presystemic metabolism, which provides a good basis for further research on phytochemical pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omura T. Forty years of cytochrome P450. Biochem Biophys Commun 1999; 266: 690–698.

    Article  CAS  Google Scholar 

  2. Nelson DR. Cytochrome P450 and the individuality of species. Arch Biochem Biophys 1999; 369: 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Watkins PB, Wrighton SA, Schuetz EG, et al. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mu- cosa of rats and man. J Clin Invest 1987; 80: 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  4. Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–392.

    PubMed  CAS  Google Scholar 

  5. Lewis DF, Eddershaw PJ, Goldfarb PS, et al. Molecular modeling of CYP3A4 from an alignment with CYP102: identification of key interactions between putative active site residues and CYP3A-specific chemicals. Xenobiotica 1996; 26: 1067–1086.

    Google Scholar 

  6. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzyme involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–423.

    PubMed  CAS  Google Scholar 

  7. Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–259.

    Article  PubMed  CAS  Google Scholar 

  8. Paine MF, Khalighi M, Fishe JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–1562.

    PubMed  CAS  Google Scholar 

  9. Benet LZ, Kroetz DL, Sheiner LB. The dynamics of drug absorption, distribution, and elimination. Goodman & Gilman’s The Phamacological Basis of Therapeutics. Hardman JG, Lim-bird LE, Molimoff PB. eds. 9th ed. New York: McGraw-Hill, 2000: 3–28.

    Google Scholar 

  10. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60: 14–24.

    Google Scholar 

  11. Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338: 1488–1490.

    Article  PubMed  CAS  Google Scholar 

  12. Carolyn L Cummins, Laurent Salphati, Michael J Reid, et al.In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Experi Ther 2003; 305 (l): 306–314.

    Article  CAS  Google Scholar 

  13. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular and pharmacological aspects of the multidrug transporter. Ann Rev Pharmacol Toxicol 1999; 39: 361–398.

    Article  CAS  Google Scholar 

  14. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–1234.

    Article  PubMed  CAS  Google Scholar 

  15. Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidominetics. J Pharm Sci 1998; 87: 1322–1330.

    Article  PubMed  CAS  Google Scholar 

  16. Carolyn LC. Examining the interactive nature of cytochrome P450 3A4 and P-glycoprotein in intestinal drug metabolism. Dissert Abstr Int 2002; 63 (4): 1855.

    Google Scholar 

  17. Paavo Honkakoski, Masahiko Negishi. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000; 347: 321–337.

    Article  PubMed  CAS  Google Scholar 

  18. Diao YY, He P, Wu MC, et al. The inducing effect of glycyrrhizin on itself in mice. J Chin Materia Medica 1999, 24 (9): 564–565.

    Google Scholar 

  19. Cheng JF, Teng SB, Chen DH, et al. Effect of glycyrrhizin and phenobarbital pretreatment of hepatic P450 3A enzyme in mice. J Fourth Milt Med Univ 2000, 21 (8): 968–971.

    CAS  Google Scholar 

  20. Wang Z, Kurosaki Y, Nakayama T, et al. Mechanism of gas-trointestinal absorption of glycyrrhizin in rats. Biol Pharm Bull 1994; 17 (10): 1399–1403.

    PubMed  CAS  Google Scholar 

  21. Wu XC, Li Q, Xin HW, et al. The pharmacokinetics of enhancement of cyclosporin A by berberine chloride co-administrated in renal transplanted recipients. Asian J Drug Metab Pharmacokinet 2001, 1 (4): 257–261.

    Google Scholar 

  22. Xin HW, Wu XC, Li Q, et al. Effects of berberine chloride and co-administration with cyclosporin on CYP3A1 in rat liver and small intestine. Chin J Clin Pharmacol Ther 2004, 9 (5): 564–568.

    Google Scholar 

  23. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996; 31 (7): 47–64.

    Google Scholar 

  24. Sigusch H, Henschel L, Kraul H, et al. Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects. Pharmazie 1994, 49: 675–679.

    PubMed  CAS  Google Scholar 

  25. Lundahl J, Regardh CG, Edgar B, et al. Effects of grapefruit juice ingestion-pharmacokinetic and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol 1997; 52: 139–145.

    Article  PubMed  CAS  Google Scholar 

  26. Kupferschmidt HH, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–28.

    Article  PubMed  CAS  Google Scholar 

  27. Offman EM, Freeman DJ, Dresser GK, et al. Red wine-cisapride interaction: comparison with grapefruit juice. Clin Pharmacol Ther 2001; 70 (1): 17–23.

    Article  PubMed  CAS  Google Scholar 

  28. Chan WK, Nguyen LT, Miller VP, et al. Mechanism-based inactivation of human cytochrome P450 3A4 by grapefruit juice and red wine. Life Sci 1998;62: 135–142.

    Google Scholar 

  29. F Peter Guengerich. Cytochrome P450 enzymes in the generation of commercial products. Nature Rev Drug Disc 2002; 1 (5): 359–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xiao-yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Xiao-yin, C. Effect of intestinal cytochrome P450 3A on phytochemical presystemic metabolism. Chin. J. Integr. Med. 11, 232–236 (2005). https://doi.org/10.1007/BF02836512

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02836512

Key words

Navigation