Skip to main content
Log in

Pharmacokinetics and extensive intestinal first-pass effects of apigenin and its active metabolite, apigenin-7-O-glucuronide, in rats

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the metabolism and pharmacokinetics of apigenin and its metabolite, apigenin-7-O-glucuronide (A7G), using a newly developed UPLC-MS/MS method.

Methods

A simple and sensitive UPLC-MS/MS method was developed for simultaneous quantification of apigenin and A7G, and their pharmacokinetic properties were examined using an in vivo rat model. Moreover, stability under various conditions, protein binding, blood distribution, and metabolic studies were performed in vitro.

Results

Apigenin showed poor stability in simulated intestinal fluid, whereas A7G was stable for 24 h. An in vivo pharmacokinetic study demonstrated that apigenin had a very low oral bioavailability (F) of 0.708% and was mainly metabolized to A7G. Notably, systemic exposure (Cmax and AUC) of apigenin after oral administration of A7G was markedly higher (2.62- and 14.3-fold, respectively) than that after oral administration of apigenin. Apigenin and A7G were significantly metabolized in both hepatic and intestinal S9 fractions. Based on the well-stirred and QGut model concepts, they were classified as compounds with low EH (0.0167–0.0389) and moderate-to-high EG (0.626–0.979) in rats, indicating that the intestine had a greater contribution than the liver to pre-systemic elimination of both phytochemicals.

Conclusion

The low F of apigenin could be attributed to its poor stability in the gastrointestinal lumen and extensive intestinal first-pass effect, which could be improved by oral administration of A7G, demonstrating the potential of A7G as a natural prodrug for improving the low F of apigenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borges G, Fong RY, Ensunsa JL, Kimball J, Medici V, Ottaviani JI, Crozier A (2022) Absorption, distribution, metabolism and excretion of apigenin and its glycosides in healthy male adults. Free Radic Biol Med 185:90–96

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Boocock DJ, Steward WP, Gescher AJ (2007) Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemother Pharmacol 60:257–266

    Article  CAS  PubMed  Google Scholar 

  • Chang SK, Alasalvar C, Shahidi F (2019) Superfruits: phytochemicals, antioxidant efficacies, and health effects - a comprehensive review. Crit Rev Food Sci Nutr 59:1580–1604

    Article  CAS  PubMed  Google Scholar 

  • Cheng HL, Zhang LJ, Liang YH, Hsu YW, Lee IJ, Liaw CC, Hwang SY, Kuo YH (2013) Antiinflammatory and antioxidant flavonoids and phenols from cardiospermum halicacabum (Dao Di Ling). J Tradit Complement Med 3:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Kim JE, Kim DD, Yoon IS (2014) In vitro-in vivo extrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: principles and applications. Drug Dev Ind Pharm 40:989–998

    Article  CAS  PubMed  Google Scholar 

  • Crasci L, Basile L, Panico A, Puglia C, Bonina FP, Basile PM, Rizza L, Guccione S (2017) Correlating in vitro target-oriented screening and docking: inhibition of matrix metalloproteinases activities by flavonoids. Planta Med 83:901–911

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X (2022) Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 13:943321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derango-Adem EF, Blay J (2021) Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front Pharmacol 12:681477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Peng M, Zhang T, Tao JS, Cai ZZ, Zhang Y (2013) Quantification of conjugated metabolites of drugs in biological matrices after the hydrolysis with beta-glucuronidase and sufatase: a review of bio-analytical methods. Biomed Chromatogr 27:1280–1295

    Article  CAS  PubMed  Google Scholar 

  • Elzayat EM, Shakeel F, Alshehri S, Ibrahim MA, Altamimi MA, Kazi M, Alanazi FK, Haq N (2019) UHPLC assisted simultaneous separation of apigenin and prednisolone and its application in the pharmacokinetics of apigenin. J Chromatogr B Analyt Technol Biomed Life Sci 1117:58–65

    Article  CAS  PubMed  Google Scholar 

  • Fathiazad F, Mazandarani M, Hamedeyazdan S (2011) Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv Pharm Bull 1:63–67

    PubMed  PubMed Central  Google Scholar 

  • Fraga CG, Croft KD, Kennedy DO, Tomas-Barberan FA (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10:514–528

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Sun R, Singh R, Yu So S, Chan CTY, Savidge T, Hu M (2022) The role of gut microbial beta-glucuronidase in drug disposition and development. Drug Discov Today 27:103316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gertz M, Harrison A, Houston JB, Galetin A (2010) Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos 38:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Gontijo VS, Dos Santos MH, Viegas C Jr (2017) Biological and chemical aspects of natural biflavonoids from plants: a brief review. Mini Rev Med Chem 17:834–862

    Article  CAS  PubMed  Google Scholar 

  • Gorzynik-Debicka M, Przychodzen P, Cappello F, Kuban-Jankowska A, Marino Gammazza A, Knap N, Wozniak M, Gorska-Ponikowska M (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C (2004) Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos 32:58–65

    Article  CAS  PubMed  Google Scholar 

  • Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC (2005) Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos 33:49–54

    Article  CAS  PubMed  Google Scholar 

  • Han DG, Seo SW, Choi E, Kim MS, Yoo JW, Jung Y, Yoon IS (2022) Impact of route-dependent phase-II gut metabolism and enterohepatic circulation on the bioavailability and systemic disposition of resveratrol in rats and humans: a comprehensive whole body physiologically-based pharmacokinetic modeling. Biomed Pharmacother 151:113141

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Lin QZ, Zhao H, Li XJ, Sang SY, Mcclements DJ, Long J, Jin ZY, Wang JP, Qiu C (2023) Bioaccessibility and bioavailability of phytochemicals: influencing factors, improvements, and evaluations. Food Hydrocoll 135:108165

    Article  CAS  Google Scholar 

  • Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J (2020) Apigenin as an anticancer agent. Phytother Res 34:1812–1828

    Article  CAS  PubMed  Google Scholar 

  • Iwaki M, Ogiso T, Ito Y (1989) Pharmacokinetics and biotransformation of hydralazine acetone hydrazone, a metabolite of hydralazine, in the rat. J Pharm Sci 78:867–873

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Chi L, Ma C (2022) Agrimonia pilosa: a phytochemical and pharmacological review. Evid Based Complement Alternat Med 2022:3742208

  • Kashyap P, Shikha D, Thakur M, Aneja A (2022) Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: a review. J Food Biochem 46:e13950

    Article  CAS  PubMed  Google Scholar 

  • Keem M-J, Seo S-W, Kim T, Jo B-G, Kim S-N, Yoon I-S, Yang MH (2023) A high-performance liquid chromatography with photodiode array detection method for simultaneous determination of three compounds isolated from Wikstroemia ganpi: assessment of the effects on cytochrome P450-mediated metabolism in vitro and in vivo. Nutrients 15:4061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013:162750

  • Kurnia D, Putri SA, Tumilaar SG, Zainuddin A, Dharsono HDA, Amin MF (2023) In silico study of antiviral activity of polyphenol compounds from ocimum basilicum by molecular docking, ADMET, and drug-likeness analysis. Adv Appl Bioinform Chem 16:37–47

    PubMed  PubMed Central  Google Scholar 

  • Li L, Jiang H, Wu H, Zeng S (2005) Simultaneous determination of luteolin and apigenin in dog plasma by RP-HPLC. J Pharm Biomed Anal 37:615–620

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos 30:370–377

    Article  CAS  PubMed  Google Scholar 

  • Marrassini C, Cogoi L, Sulsen V, Anesini C (2020) Apigenin-7-Glucuronide from urera aurantiaca inhibits tumor necrosis factor alpha and total nitrite release in lipopolysaccharide-activated macrophages. Evid Based Complement Alternat Med 2020:6638764

  • Mcclements DJ (2021) Advances in edible nanoemulsions: digestion, bioavailability, and potential toxicity. Prog Lipid Res 81:101081

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DH, Seo UM, Zhao BT, Le DD, Seong SH, Choi JS, Min BS, Woo MH (2017) Ellagitannin and flavonoid constituents from Agrimonia pilosa Ledeb. With their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorg Chem 72:293–300

    Article  CAS  PubMed  Google Scholar 

  • Noh K, Pang KS (2019) Theoretical consideration of the properties of intestinal flow models on route-dependent drug removal: segregated Flow (SFM) vs. traditional (TM). Biopharm Drug Dispos 40:195–213

    Article  CAS  PubMed  Google Scholar 

  • O’leary KA, Day AJ, Needs PW, Sly WS, O’brien NM, Williamson G (2001) Flavonoid glucuronides are substrates for human liver β-glucuronidase. FEBS Lett 503:103–106

    Article  PubMed  Google Scholar 

  • Prochazkova D, Bousova I, Wilhelmova N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE (2022) Health benefits of polyphenols: a concise review. J Food Biochem 46:e14264

    Article  CAS  PubMed  Google Scholar 

  • Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A (2023) Conjugation, prodrug, and co-administration strategies in support of nanotechnologies to improve the therapeutic efficacy of phytochemicals in the central nervous system. Pharmaceutics 15:1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H, Azzini E, Setzer WN, Martins N (2019) The therapeutic potential of apigenin. Int J Mol Sci 20:1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby-Pham SNB, Miller RB, Howell K, Dunshea F, Bennett LE (2017) Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci Rep 7:1931

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Seo SW, Han DG, Choi E, Seo MJ, Song IS, Yoon IS (2022a) Factors determining the oral absorption and systemic disposition of zeaxanthin in rats: in vitro, in situ, and in vivo evaluations. Pharm Biol 60:2266–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo SW, Han DG, Choi E, Park T, Byun JH, Cho HJ, Jung IH, Yoon IS (2022b) Development and application of a physiologically based pharmacokinetic model for entrectinib in rats and scale-up to humans: route-dependent gut wall metabolism. Biomed Pharmacother 146:112520

    Article  CAS  PubMed  Google Scholar 

  • Seo SW, Han DG, Baek YM, Park MC, Yoo JW, Jung Y, Maeng HJ, Myung H, Yoon IS (2023) Investigation of the factors responsible for the low oral bioavailability of alizarin using a sensitive LC-MS/MS method: in vitro, in situ, and in vivo evaluations. Drug Dev Res 84:579–591

    Article  CAS  PubMed  Google Scholar 

  • Seong GS, Seo SW, Cho JY, Lee KW, Lee BJ, Yoon IS, Jin HE (2022) Determination of leuprolide-fatty acid conjugate in rat plasma using LC-MS/MS and its pharmacokinetics after subcutaneous administration in rats. Molecules 27:8716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69:273–278

    Article  CAS  PubMed  Google Scholar 

  • Shia CS, Hou YC, Tsai SY, Huieh PH, Leu YL, Chao PD (2010) Differences in pharmacokinetics and ex vivo antioxidant activity following intravenous and oral administrations of emodin to rats. J Pharm Sci 99:2185–2195

    Article  CAS  PubMed  Google Scholar 

  • Swank RT, Pfister K, Miller D, Chapman V (1986) The egasyn gene affects the processing of oligosaccharides of lysosomal beta-glucuronidase in liver. Biochem J 240:445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ (2012) Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. J Agric Food Chem 60:3223–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trontelj J (2012) Quantification of glucuronide metabolites in biological matrices by LC-MS/MS. Tandem Mass Spectrom Appl Princ 531–558

  • Tu Y, Zhou L, Li L, Wang L, Gao S, Hu M (2020) Development and validation of an LC-MS/MS method for the quantification of flavonoid glucuronides (wogonoside, baicalin, and apigenin-glucuronide) in the bile and blood samples: application to a portal vein infusion study. Anal Biochem 601:113723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Food and Drug Administration (2018) Bioanalytical Method Validation Guidance for Industry. https://www.fda.gov/media/70858/download. Accessed 16 May 2023

  • Vinayak M, Maurya AK (2019) Quercetin loaded nanoparticles in targeting cancer: recent development. Anticancer Agents Med Chem 19:1560–1576

    Article  CAS  PubMed  Google Scholar 

  • Vo D-K, Nguyen T-T-L, Maeng H-J (2022) Effects of 1α, 25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. J Pharm Investig 52:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vucic V, Grabez M, Trchounian A, Arsic A (2019) Composition and potential health benefits of pomegranate: a review. Curr Pharm Des 25:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Guo C, Yu Q, Li Y, Wang X, Wang X, Chen C (2007) Quantitative determination of apigenin and its metabolism in rat plasma after intravenous bolus administration by HPLC coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 855:286–289

    Article  CAS  PubMed  Google Scholar 

  • Wang MQ, Firrman J, Liu LS, Yam K (2019) A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int 2019:7010467

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jia M, Gao Y, Zhao B (2023) Multiplex quantitative analysis of 9 compounds of Scutellaria baicalensis georgi in the plasma of respiratory syncytial virus-infected mice based on HPLC-MS/MS and pharmacodynamic effect correlation analysis. Molecules 28:6001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A (2007) Prediction of intestinal first-pass drug metabolism. Curr Drug Metab 8:676–684

    Article  CAS  PubMed  Google Scholar 

  • Yoon IS, Choi MK, Kim JS, Shim CK, Chung SJ, Kim DD (2011) Pharmacokinetics and first-pass elimination of metoprolol in rats: contribution of intestinal first-pass extraction to low bioavailability of metoprolol. Xenobiotica 41:243–251

    Article  CAS  PubMed  Google Scholar 

  • Yun T-S, Jung M, Bang K-H, Lee H-K, Jin M, Yoo H, Won J-H, Song B, Hwang Y-R, Baek J-S (2023) An economically advantageous amorphous solid dispersion of the fixed combination of lopinavir and ritonavir. J Pharm Investig 53:549–561

    Article  CAS  Google Scholar 

  • Zhang J, Liu D, Huang Y, Gao Y, Qian S (2012) Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm 436:311–317

    Article  CAS  PubMed  Google Scholar 

  • Zhu BT, Evaristus EN, Antoniak SK, Sarabia SF, Ricci MJ, Liehr JG (1996) Metabolic deglucuronidation and demethylation of estrogen conjugates as a source of parent estrogens and catecholestrogen metabolites in Syrian hamster kidney, a target organ of estrogen-induced tumorigenesis. Toxicol Appl Pharmacol 136:186–193

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Zhang J, Lv Z, Yu M (2021) LC-MS/MS determination of apigenin in rat plasma and application to pharmacokinetic study. Curr Pharm Biotechnol 22:274–280

    Article  CAS  PubMed  Google Scholar 

  • Zuccari G, Alfei S (2023) Development of phytochemical delivery systems by nano-suspension and nano-emulsion techniques. Int J Mol Sci 24:9824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea Government (MSIT) (NRF-2023R1A2C1006010) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI23C0141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se Chan Kang or In-Soo Yoon.

Ethics declarations

Conflict of interest

All authors (S.W. Seo, S.H. Choi, J.K. Hong, K.M. Kim, S.C. Kang and I.S. Yoon) declare that they have no conflict of interest.

Research involving human and animal rights

Animal studies were performed according to the protocol approved by Institutional Animal Care and Use Committee of Pusan National University (approval number: PNU-2023-3245; Busan, Republic of Korea).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, SW., Choi, S.H., Hong, JK. et al. Pharmacokinetics and extensive intestinal first-pass effects of apigenin and its active metabolite, apigenin-7-O-glucuronide, in rats. J. Pharm. Investig. (2024). https://doi.org/10.1007/s40005-024-00662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40005-024-00662-1

Keywords

Navigation