Skip to main content
Log in

Excursions into multiphase reactions

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Multiphase reactions are ubiquitous in the chemical industry and a rational analysis of reactors where they are conducted requires an intimate knowledge of chemical kinetics, thermodynamics, mass transfer and fluid mechanics. In many situations in practice, conducting reactions in multiphase systems is advantageous as compared to that in a single liquid phase system.

The use of phase transfer catalysts, micellar catalysts, emulsifiers, hydrotropic agents etc., can significantly enhance the rates of multiphase reactions. A change-over from gas-liquid to liquid-liquid mode of operation could also have favourable influence. Solid-liquid reactions have received limited attention and many aspects need to be studied intensively. Three-phase reactions offer some fascinating features. The effect of solid particles, which may be sparingly soluble reactant, catalyst or even alien material, can be very substantial.

Multiphase biochemical and electrochemical reactions have many unique features and such reactions are becoming increasingly important. Novel strategies of conducting multiphase reactions have been developed of late, though there are plenty of problems yet to be tackled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed M, Nelson J R, Gibson C A 1984ep 100, 373cf 1984Chem. Abstr. 100: 138590g

  • Alper E, Danckwerts P V 1976Chem. Eng. Sci. 31: 599–608

    Article  Google Scholar 

  • Andersson E, Mattiasson B, Hahn-Hagerdal B 1983Acta Chem. Scand. B37: 749–750

    Article  Google Scholar 

  • Anon 1984Chem. Eng. News 62(5): 25

  • Bakke J M, Liasker J, Lorentzen G B 1982J. Prakt. Chem. 324: 488–490

    Article  Google Scholar 

  • Baumgartner H J 1983ep 76, 533cf 1983Chem. Abstr. 99: 38034w

  • Beenackers A A C M, Van Swaaij W P M, Willibrordus P M 1983ep 94, 136cf 1984Chem. Abstr. 100: 9374r

  • Bend Research Inc. 1980fr 2, 451, 764cf 1982Chem. Abstr. 97: 200168s

  • Bhave R R, Sharma M M 1981Trans. Inst. Chem. Eng. 59: 161–169

    Google Scholar 

  • Bhave R R, Sharma M M 1983Chem. Eng. Sci. 38: 141–145

    Article  Google Scholar 

  • Bolden P L, Hoskins J C, Kings A D Jr 1983J. Colloid Interface Sci. 91: 454–463

    Article  Google Scholar 

  • Boussoulengas A V, Ehdaie S, Jansson R F W 1979Chem. Ind. (London) 670–672

  • Bunton C A 1979Catal. Rev. Sci. Eng. 20: 1–56

    Article  Google Scholar 

  • Carta G 1984Ind. Eng. Chem. Fundam. 23: 260–264

    Article  Google Scholar 

  • Charpentier J C, Laurent A 1974AIChE J. 20: 1029–1031

    Article  Google Scholar 

  • Chasar D W 1982Synthesis 10: 841–842

    Article  Google Scholar 

  • Coldiron D C, Albright L F, Alexander L G 1958Ind. Eng. Chem. 50: 991–992

    Article  Google Scholar 

  • Comninellis Ch, Plattner E 1982J. Appl. Electrochem. 12: 253–256

    Article  Google Scholar 

  • Danckwerts P V, Alper E 1975Trans. Inst. Chem. Eng. 53: 34–40

    Google Scholar 

  • Danckwerts P V, Sharma M M 1966Chem. Eng. (London) No. 202 CE: 244–280

  • da Silva A T, Danckwerts P V 1968 Proc. Symp. Tripartite Chem. Eng. Conf., Montreal (London: Inst. Chem Eng.) p. 48–56

    Google Scholar 

  • Dehmlow E V, Dehmlow S S 1980Phase transfer catalysis, Monographs in modern chemistry (Weinham: Verlag Chemie) Vol. 2

    Google Scholar 

  • Doraiswamy L K, Sharma M M 1984Heterogeneous reactions: analysis, examples and reactor design (New York: John Wiley) Vol. 2

    Google Scholar 

  • Falk J C 1976Catalysis in organic synthesis (eds.) P N Rylander, H Greenfield (New York: Academic Press)

    Google Scholar 

  • Fendler J H 1984Chem. Eng. News 62(1): 25–38

    Google Scholar 

  • Fendler J H, Fendler E J 1975Catalysis in micellar and macromolecular systems (New York: Academic Press)

    Google Scholar 

  • Fourré P, Bauer D, Lemerie J 1983Anal. Chem. 55: 662–667

    Article  Google Scholar 

  • Fukuoka S, Chono M, Kohno M 1984J. Org. Chem. 49: 1458–1460

    Article  Google Scholar 

  • Gonzalez A, Holt S L 1981J. Org. Chem. 46: 2594–2596

    Article  Google Scholar 

  • Graft G M 1983Chem. Eng. 90(6): 14–19

    Google Scholar 

  • Harnisch H 1980Pure Appl. Chem. 52: 809–824

    Article  Google Scholar 

  • Hirai H, Komiyama M 1981 P C T Int. Appl.wo 8203073cf 1983Chem. Abstr. 98: 71670c

  • Holt S L 1980J. Disp. Sci. Technol. 1: 423–464

    Article  Google Scholar 

  • Holwachs W, Schugerl K 1980Int. J. Chem. Eng. 20: 519–528

    Google Scholar 

  • Hoskins J C, King A D Jr 1981J. Colloid Interface Sci. 82: 260–263

    Article  Google Scholar 

  • Ido T, Ohyama N, Goto S, Teshima H 1983Kagaku Kogaku Ronbunshu 9: 58cf 1983Chem. Abstr. 98: 125171m

    Google Scholar 

  • Jaeger D A, Frey M R 1982J. Org. Chem. 47: 311–315

    Article  Google Scholar 

  • Jaeger D A, Ward M D 1982J. Org. Chem. 47: 2211–2223

    Google Scholar 

  • Janakiraman B 1984Heterogeneous reactions Ph. D. (Tech.) Thesis, University of Bombay

  • Janakiraman B, Sharma M M 1982Chem. Eng. Sci. 37: 1497–1503

    Article  Google Scholar 

  • Janakiraman B, Sharma M M 1985aChem. Eng. Sci. 40: 223–233

    Article  Google Scholar 

  • Janakiraman B, Sharma M M 1985bChem. Eng. Sci. 40: 235–237

    Article  Google Scholar 

  • Janakiraman B, Sharma M M 1985cChem. Eng. Sci. (in press)

  • Januszkiewicz K, Alper H 1983J. Mol. Catal. 19: 139–143

    Article  Google Scholar 

  • Juvekar V A, Sharma M M 1977Trans. Inst. Chem. Eng. UK 55: 77–92

    Google Scholar 

  • Kastanek F, Zahradnik J, Ocampo G 1982Collect. Czech. Chem. Commun. 47: 3019–3026

    Google Scholar 

  • Kenney C N 1975Catal. Rev. Sci. Eng. 11: 197–224

    Article  Google Scholar 

  • Kitagawa T, Nishikawa Y, Frankenfeld J W, Li N N 1977Environ. Sci. Technol. 11: 602–605

    Article  Google Scholar 

  • Koopman P G J, Buurmans H M A, Keiboom A P G, van Bekkum H 1981Recl. Trav. Chim. Pays. Baas. 100: 156–161

    Google Scholar 

  • Korenman Y I 1974Russ. J. Phys. Chem. 48: 377–379

    Google Scholar 

  • Kramer G M 1982aus 4, 357, 482

  • Kramer G M 1982bus 4, 357, 483

  • Kramer G M 1984us 4, 424, 387cf 1984Chem. Abstr. 100: 120496w

  • Kreysa G, Kulps H J 1983German Chem. Eng. 6: 325–336

    Google Scholar 

  • Krishnakumar V K, Sharma M M 1983Synthesis 17: 558–559

    Article  Google Scholar 

  • Kuneida N, Shiode S, Ryoshi H, Taguchi H, Kinoshita M 1984Makromol. Chem. Rapid Commun. 5: 137–140

    Article  Google Scholar 

  • Lahiri R N, Yadav G D, Sharma M M 1983Chem. Eng. Sci. 38: 1119–1133

    Article  Google Scholar 

  • Laurent A, Fonteix C, Charpentier J C 1980AIChE J. 26: 282–287

    Article  Google Scholar 

  • Laurent E, Rauriyar G, Thomalla M 1982Nouv. J. Chim. 6: 515–517

    Google Scholar 

  • Lee D G 1982Oxidation in organic chemistry, Part D (New York: Academic Press) Chap. 2, p. 147

    Google Scholar 

  • Lele S S, Bhave R R, Sharma M M 1983aChem. Eng. Sci. 38: 765–773

    Article  Google Scholar 

  • Lele S S, Bhave R R, Sharma M M 1983bInd. Eng. Chem. Process Des. Dev. 22: 73–6

    Article  Google Scholar 

  • Levenson G I P 1954J. Appl. Chem. (London) 4: 13–18

    Google Scholar 

  • Li N N 1978J. Membrane Sci. 3: 265–269

    Article  Google Scholar 

  • Li N N, Asher W J 1971Adv. Chem. Ser. 118: 1–14

    Article  Google Scholar 

  • Mackay R A 1981Adv. Colloid Interface Sci. 15: 131–156

    Article  Google Scholar 

  • Markofsky S B 1983 Belgium 897,411cf 1984Chem. Abstr. 100: 15622m

  • Marr R, Kopp A 1982Int. Chem. Eng. 22: 44–60

    Google Scholar 

  • Martin C A, Golich T G, Jaeger D A 1984J. Colloid Interface Sci. 99: 561–567

    Article  Google Scholar 

  • Martin C A, McCrann P M, Angelos G H, Jaeger D A 1982Tetrahedron Lett. 23: 4651–4654

    Article  Google Scholar 

  • Martinek K, Semenov A V 1981J. Appl. Biochem. 3: 93–126

    Google Scholar 

  • Martinola F 1980German Chem. Eng. 3: 79–88

    Google Scholar 

  • Mashelkar R A 1984Recent advances in the engineering analysis of chemically reacting systems (ed.) L K Doraiswamy (New Delhi: Wiley Eastern) p. 497

    Google Scholar 

  • Matson S L, Herrick C S, Ward W J 1977Ind. Eng. Chem. Process Des. Dev. 16: 370–374

    Article  Google Scholar 

  • McKee R H 1946Ind. Eng. Chem. 38: 383–384

    Article  Google Scholar 

  • Mehra A, Sharma M M 1985Chem. Eng. Sci. (in press)

  • Menger F M 1979Pure Appl. Chem. 51: 999–1007

    Article  Google Scholar 

  • Neumann R, Sasson Y 1983Tetrahedron 39: 3437–3440

    Article  Google Scholar 

  • Nippon Zeon Company 1982jp 57,205,404cf 1983Chem. Abstr. 99: 39641d

  • Ohkubo K, Ogata H, Yamaki K, Yamashika K 1984Makromol. Chem. 185: 891–897

    Article  Google Scholar 

  • Okubo T, Chen S, Ise N 1973Bull. Chem. Soc. Jpn. 46: 397–400

    Article  Google Scholar 

  • Pal S K, Sharma M M, Juvekar V A 1982Chem. Eng. Sci. 37: 327–336

    Article  Google Scholar 

  • Parkinson G, Short H, McQueen S 1983Chem. Eng. 90(17): 22–27

    Google Scholar 

  • Parulekar S J, Sharma M M, Joshi J B, Shah Y T 1982J. Sep. Process Technol. 4: 2–28

    Google Scholar 

  • Peters R H 1975Textile chemistry, The physical chemistry of dyeing (Amsterdam: Elsevier) Vol. 3, p. 598

    Google Scholar 

  • Pletcher D 1982Chem. Ind. 11: 358–362

    Google Scholar 

  • Ramachandran P A, Sharma M M 1969Chem. Eng. Sci. 24: 1681–1686

    Article  Google Scholar 

  • Ramachandran P A, Sharma M M 1970Chem. Eng. Sci. 25: 1743–1750

    Article  Google Scholar 

  • Ramachandran P A, Sharma M M 1971Trans. Inst. Chem. Eng. 49: 253–280

    Google Scholar 

  • Ramamurthy V 1984Proc. Indian Acad. Sci. (Chem. Sci.) 93: 635–646

    Google Scholar 

  • Rasmussen J K 1982us 4,326,049cf 1982Chem. Abstr. 97: 24370z

  • Rasmussen J K, Smith H K 1981J. Am. Chem. Soc. 103: 730–731

    Article  Google Scholar 

  • Rattee I D, Breuer M M 1974Physical chemistry of dye absorption (London: Academic Press) p. 244

    Google Scholar 

  • Ravindranath K, Mashelkar R A 1984AIChE J. 30: 415–422

    Article  Google Scholar 

  • Regen S L 1975J. Am. Chem. Soc. 97: 5956–5957

    Article  Google Scholar 

  • Regen S L 1979Angew. Chem. Int. Ed. Engl. 18: 421–429

    Article  Google Scholar 

  • Ruthven D M, Kenney C N 1968Chem. Eng. Sci. 23: 981–990

    Article  Google Scholar 

  • Sada E, Kumazawa H, Butt M A 1979Chem. Eng. Sci. 34: 715–718

    Article  Google Scholar 

  • Saengar W 1980Angew. Chem. Int. Ed. Engl. 19: 344–362

    Article  Google Scholar 

  • Saunby J B, Kiff B W 1976Hydrocarbon Process Petrol. Refiner. 55(11): 247–252

    Google Scholar 

  • Sharma M M 1965Trans. Faraday Soc. 61: 681–688

    Article  Google Scholar 

  • Sharma M M 1983Chem. Eng. Sci. 38: 21–28

    Article  Google Scholar 

  • Sharma M M 1984Frontiers in chemical reaction engineering (eds.) L K Doraiswamy, R A Mashelkar (New Delhi: Wiley Eastern) Vol. 1, p. 155

    Google Scholar 

  • Sirkar K K 1980 Gas permeation and separation through surfactant liquid membranes—State of the art, presented at 73rd Annual Meeting of AIChE, Chicago, paper No. 74a

  • Skrzewski J, Cichacz E 1984Bull. Chem. Soc. Jpn. 57: 271–274

    Article  Google Scholar 

  • Sridharan K, Sharma M M 1976Chem. Eng. Sci. 31: 767–774

    Article  Google Scholar 

  • Sumner H H, Weston C D 1963Am. Dyestuff Reporter 52: 442–450

    Google Scholar 

  • Sviridov V V, Azarova V I 1983J. Appl. Chem. USSR 56: 1031–1033

    Google Scholar 

  • Szeja W 1982Zesz. Nauk. Politech. Slask. Chem. 720: 5–78cf 1983Chem. Abstr. 98: 126496h

    Google Scholar 

  • Tabushi I 1982Acc. Chem. Res. 15: 66–72

    Article  Google Scholar 

  • Taguchi H, Kunieda N, Kinoshita M 1983Makromol. Chem. 184: 925–933

    Article  Google Scholar 

  • Tundo P, Venturello P, Angeletti E 1983J. Chem. Soc. Perkin Trans. II 4: 485–492, 493–496

    Article  Google Scholar 

  • Vasudevan T V, Sharma M M 1984Ind. Eng. Chem. Process Des. Dev. 23: 400–406

    Article  Google Scholar 

  • Wadekar V V, Sharma M M 1981J. Sep. Process Technol. 2: 1–15

    Google Scholar 

  • Woodruff H B 1983Proc. of fifth Symp. on biotechnology for fuels and chemicals, biotechnology and bioengineering symposium No. 13 (New York: John Wiley)

    Google Scholar 

  • Yadav G D 1975Chem. Ind. Dev. 9: 16–23

    Google Scholar 

  • Yadav G D, Sharma M M 1981Ind. Eng. Chem. Process Des. Dev. 20: 385–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on the lecture delivered by the author at the Golden Jubilee meeting of the Academy in Bangalore, February 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.M. Excursions into multiphase reactions. Sadhana 8, 387–409 (1985). https://doi.org/10.1007/BF02835613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835613

Keywords

Navigation