Skip to main content
Log in

On the Siegel-Eisenstein measure and its applications

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

An Eisenstein measure on the symplectic group over rational number field is constructed which interpolatesp-adically the Fourier expansion of Siegel-Eisenstein series. The proof is based on explicit computation of the Fourier expansions by Siegel, Shimura and Feit. As an application of this result ap-adic family of Siegel modular forms is given which interpolates Klingen-Eisenstein series of degree two using Boecherer’s integral representation for the Klingen-Eisenstein series in terms of the Siegel-Eisenstein series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Andrianov and V. L. Kalinin,On analytic properties of standard zeta functions of Siegel modular forms, Matematicheskii Sbornik106 (1978), 323–339 (in Russian).

    MathSciNet  MATH  Google Scholar 

  2. S. Böcherer,Über die Funktionalgleichung automorpher L-Funktionen zur Siegelscher Modulgruppe, Journal für die Reine und Angewandte Mathematik362 (1985), 146–168.

    Google Scholar 

  3. S. Böcherer,Über die Fourier-Jacobi Entwickelung Siegelscher Eisensteinreihen. I. II., Mathematische Zeitschrift183 (1983), 21–46;189 (1985), 81–100.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Coleman and B. Edixhoven,On the semisimplicity of the U p operator on modular forms, Mathematische Annalen310 (1998), 119–127.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Deligne and K. A. Ribet,Values of Abelian L-functions at negative integers over totally real fields, Inventiones Mathematicae59 (1980), 227–286.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Feit,Poles and residues of Eisenstein series for sym plectic and unitary groups, Memoirs of the American Mathematical Society61 (1986), No. 346, iv+89pp.

  7. P. B. Garrett,Pullbacks of Eisenstein series: applications, inAutomorphic Forms of Several Variables, Taniguchi symposium, 1983, Birkhaüser, Boston-Basel-Stuttgart, 1984.

    Google Scholar 

  8. M. Harris,Special values of zeta functions attached to Siegel modular form, Annales Scientifiques de l’École Normale Supérieure14 (1981), 77–120.

    MATH  Google Scholar 

  9. M. Harris,The rationality of holomorphic Eisenstein series series, Inventiones Mathematicae63 (1981), 305–310.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Harris,Eisenstein series on Shimura varieties, Annals of Mathematics119 (1984), 59–94.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Hida,A p-adic measure attached to the zeta functions associated with two elliptic cusp forms. I, Inventiones Mathematicae79 (1985), 159–195.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Hida,Galois representations into GL 2(Z p [[X]])attached to ordinary cusp forms, Inventiones Mathematicae85 (1986), 545–613.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Hida,On p-adic L-functions of GL(2) ×GL(2)over totally real fields, Annales de l’Institut Fourier (Grenoble)40 (1991), 311–391.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Hida,Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts 26, Cambridge University Press, 1993.

  15. K. Iwasawa,Lectures on p-adic L-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, 1972.

  16. H. Katsurada,An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree 3, Nagoya Mathematical Journal146 (1997), 199–223.

    MathSciNet  MATH  Google Scholar 

  17. N. M. Katz,p-adic interpolation of real analytic Eisenstein series, Annals of Mathematics104 (1976), 459–571.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. M. Katz,The Eisenstein measure and p-adic interpolation, American Journal of Mathematics99 (1977), 238–311.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. M. Katz,p-adic L-functions for CM-fields, Inventiones Mathematicae48 (1978), 199–297.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Kaufhold,Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktionen 2. Grades, Mathematische Annalen137 (1959), 454–476.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Kitaoka,Lectures on Siegel Modular Forms and Representations by Quadratic Forms, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  22. H. Klingen,Zum Darstellungssatz für Siegelsche Modulformen, Mathematische Zeitschrift102 (1967), 30–43.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kubota and H.-W. Leopoldt,Eine p-adische Theorie der Zetawerte, Journal für die Reine und Angewandte Mathematik214/215 (1964), 328–339.

    MathSciNet  MATH  Google Scholar 

  24. N. Kurokawa and S. Mizumoto,On Eisenstein series of degree two, Proceedings of the Japan AcademyA57 (1981), 134–139.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Lang,Introduction to Modular Forms, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  26. S. Mizumoto,Fourier coefficients of generalized Eisenstein series of degree two, Proceedings of the Japan AcademyA59 (1983), 231–264.

    MathSciNet  MATH  Google Scholar 

  27. S. Mizumoto,Fourier coefficients of generalized Eisenstein series of degree two, II, Kodai Mathematical Journal7 (1984), 86–110.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. A. Panchishkin,Convolutions of Hilbert modular forms and their non-Archimedean analogues, Matematicheskii Sbornik136 (1988), 574–587 (in Russian).

    MathSciNet  MATH  Google Scholar 

  29. A. A. Panchishkin,Non-Archimedean Automorphic Zeta-functions, Moscow University Press, 1988, 166pp.

  30. A. A. Panchishkin,Motives over totally real fields and p-adic L-functions, Annales de l’Institut Fourier (Grenoble),44 (1994), 989–1023.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. A. Panchishkin,Non-Archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics1471, Springer-Verlag, Berlin, 1991, 166pp.

    MATH  Google Scholar 

  32. A. A. Panchishkin,Motives for absolute Hodge cycles, Proceedings of the Joint AMS Summer Conference on Motives, Vol. 1, Seattle, July 20–August 2, 1991, Seattle, Providence, R.I., 1994, pp. 461–483.

  33. A. A. Panchishkin,Admissible Non-Archimedean standard zeta functions of Siegel modular forms, Proceedings of the Joint AMS Summer Conference on Motives, Vol. 2, Seattle, July 20–August 2, 1991, Seattle, Providence, R.I., 1994, pp. 251–292.

  34. I. I. Piatetski-Shapiro and S. Rallis,L-functions of automorphic forms on simple classical groups, Modular Forms Symposium, Durham, 30 June–10 July, 1983, Chichester, 1984.

  35. R. A. Rankin,Contribution to the theory of Ramanujan’s function τ(n) and similar arithmetical functions. I. II, Proceedings of the Cambridge Philosophical Society35 (1939), 351–372.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. A. Rankin,The scalar product of modular forms, Proceedings of the London Mathematical Society35 (1939), 351–372.

    MathSciNet  MATH  Google Scholar 

  37. S. Raghavan,On an Eisenstein series of degree 3, Journal of the Indian Mathematical Society39 (1975), 103–120.

    MathSciNet  MATH  Google Scholar 

  38. G. Shimura,Algebraic relations between critical values of zeta functions and inner products, American Journal of Mathematics105 (1983), 253–285.

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Shimura,On Eisenstein series, Duke Mathematical Journal50 (1983), 417–476.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Shimura,Eisenstein series and zeta functions on symplectic groups, Inventiones Mathematicae119 (1995), 539–584.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Shimura,Confluent hypergeometric functions on tube domains, Mathematische Annalen260 (1982), 269–302.

    Article  MathSciNet  MATH  Google Scholar 

  42. C.-L. Siegel,Einführung in die Theorie der Modulfunktionen n-ten Grades, Mathematische Annalen116 (1939), 617–657.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Strum,The critical values of zeta-functions associated to the symplectic group, Duke Mathematical Journal48 (1981), 327–350.

    Article  MathSciNet  Google Scholar 

  44. J. Tilouine and E. Urban,Familles p-adiques à trois variables de formes de Siegel et de représentations galoisiennes, Comptes Rendus de l’Académie des Sciences, Paris, Sér. I321 (1995), 5–10.

    MathSciNet  Google Scholar 

  45. A. Wiles,On ordinary λ-adic representations associated to modular forms, Inventiones Mathematicae94 (1988), 529–573.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panchishkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchishkin, A.A. On the Siegel-Eisenstein measure and its applications. Isr. J. Math. 120, 467–509 (2000). https://doi.org/10.1007/BF02834848

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834848

Keywords

Navigation