Skip to main content
Log in

The band-gap excitons in gallium selenide

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Absorption, and reflexion spectra of GaSe near the fundamental gap are interpreted in terms of pseudopotential band calculations. Selection rules for the direct optical valence-to-conduction band transitions are derived. Valence band mixing induced by spin-orbit coupling is invoked to explain the low observed probability for transitions in light polarized perpendicular to the crystal c-axis. The spectra of the excitons associated with the direct gap are discussed in the ellipsoidal effectivemass approximation. Corrective terms are added to account for the observed exchange splitting of the exciton ground state. Field-free spectra as well as spectra modified by the presence of magnetic fields parallel and perpendicular to c are considered. The magneto-Stark effect which gives rise to a mixing of the 2s and2py states and thus renders the2py state visible affords determination of the anisotropy parameter. The value of this parameter as well as those of the components parallel and perpendicular to c of the reduced effective masses show that the electronic states in GaSe are nearly isotropic. This is in good agreement with the results of the pseudopotential band calculations which clearly demonstrate the three-dimensional character of valence and conduction bands.

Riassunto

Si interpretano gli spettri di assorbimento e di riflessione del GraSe in prossimità della « gap » fondamentale facendo uso di calcoli della struttura a bande basati sull’impiego di pseudopotenziali. Si ottengono regole di selezione per le transizioni ottiche dirette tra la banda di valenza e quella di conduzione. Si ricorre al mescolamento della banda di valenza determinato dall’accoppiamento spin-orbita per spiegare la bassa probabilità di transizione che si osserva impiegando luce polarizzata perpendicolarmente all’asse c del cristallo. Si discutono gli spettri degli eccitoni associati alla « gap » diretta, nell’approssimazione di masse effettive ellissoidali. Si aggiungono termini di correzione per tener conto della separazione di scambio che si osserva nello stato fondamentale degli eccitoni. Si considerano sia spettri liberi da campi esterni sia spettri modificati dalla presenza di campi magnetici paralleli e perpendicolari a c. L’effetto Stark magnetico, che dà origine alla sovrapposizione degli stati 2s e2py e che in tal modo rende possibile l’osservazione dello stato2py consente di determinare il parametro di anisotropia. Sia il valore di tale parametro sia quelli delle componenti, parallele e perpendicolare ac, delie masse effettive ridotte mostrano che gli stati elettronici del GaSe sono pressoché isotropi. Ciò è in buon accordo con i risultati dei calcoli della struttura a bande basati sull’impiego di pseudopotenziali e che mostrano charamente il carattere tridimensionale delia banda di valenza e di quella di conduzione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fielding, G. Fischer andE. Mooser:Journ. Phys. Chem. Sol.,8, 434 (1959).

    Article  ADS  Google Scholar 

  2. R. Nietsche, H. U. Boelsterli andM. Lichtensteiger:Journ. Phys. Chem. Sol.,21, 199 (1961).

    Article  ADS  Google Scholar 

  3. H. U. Boelsterli andE. Mooser:Helv. Phys. Acta,35, 538 (1962).

    Google Scholar 

  4. J. L. Brebner:Journ. Phys. Chem. Sol.,25, 1427 (1964).

    Article  ADS  Google Scholar 

  5. J. Halpern:Proceedings of the International Conference on Semiconductors (Kyoto, 1966), p. 180.

  6. K. Aoyagi,A. Misu,G. Kuwabara,Y. Nishina,S. Kurita,T. Fukuroi,O. Akimoto,H. Hasegawa,M. Shinada andS. Sugano:Proceedings of the Interna. tional Conferenee on Semiconductors (Kyoto, 1966), p. 174.

  7. J. L. Brebner, J. Halpern andE. Mooser:Helv. Phys. Acta,40, 385 (1967).

    Google Scholar 

  8. A. Baldereschi andF. Bassani:Phys. Rev. Lett.,19, 66 (1967).

    Article  ADS  Google Scholar 

  9. A. Baldereschi andF. Bassani:Proceedings of the International Conference on She Physics of Semiconductors, Vol.1 (Moscow, 1968), p. 280.

    Google Scholar 

  10. L. Fritsche:Phys. Stat. Sol.,34, 195 (1969).

    Article  ADS  Google Scholar 

  11. L. Fritsche andF. D. Heidt:Phys. Stat. Sol.,35, 987 (1969).

    Article  ADS  Google Scholar 

  12. O. Akimoto andH. Hasegawa:Journ. Phys. Soc. Japan,22, 181 (1966).

    Article  ADS  Google Scholar 

  13. J. L. Brebner:Canad. Journ. Phys.,51, 497 (1973).

    Article  ADS  Google Scholar 

  14. M. Shinada, O. Akimoto, H. Hasegawa andK. Tanaka:Journ. Phys. Soc. Japan,28, 975 (1970).

    Article  ADS  Google Scholar 

  15. F. Bassani andA. Baldereschi:Surface Sci.,37, 304 (1973).

    Article  ADS  Google Scholar 

  16. F. Bassani andG. Pastori Parravicini:Nuovo Cimento,50 B, 95 (1967).

    Article  ADS  Google Scholar 

  17. H. Kamimura andK. Nakao:Proceedings of the International Conference on Semiconductors (Kyoto, 1966), p. 27.

  18. H. Kamimura andK. Nakao:Journ. Phys. Soc. Japan,24, 1313 (1968).

    Article  ADS  Google Scholar 

  19. H. J. Ralph:Solid State Comm.,3, 303 (1965).

    Article  ADS  Google Scholar 

  20. M. Shinada andS. Sugano:Journ. Phys. Soc. Japan,21, 1936 (1966).

    Article  ADS  Google Scholar 

  21. J. A. Déverin:Helv. Phys. Acta,42, 397 (1969).

    Google Scholar 

  22. J. A. Déverin:Nuovo Cimento,63 B, 1 (1969).

    Article  ADS  Google Scholar 

  23. A. Baldereschi andM. G. Draz:Nuovo Cimento,68 B, 217 (1970).

    Article  ADS  Google Scholar 

  24. J. L. Brebner, J. Halpern andE. Mooser:Helv. Phys. Acta,40, 385 (1967).

    Google Scholar 

  25. J. L. Brebner andE. Mooser:Phys. Lett.,24 A, 274 (1967).

    Article  ADS  Google Scholar 

  26. A. Bourdon andF. Khelladi:Solid State Comm.,9, 1715 (1971).

    Article  ADS  Google Scholar 

  27. E. Aulich, J. L. Brebner andE. Mooser:Phys. Stat. Sol.,31, 129 (1969).

    Article  ADS  Google Scholar 

  28. H. Kamimura, K. Nakao andY. Nishina:Phys. Rev. Lett.,22, 1379 (1969).

    Article  ADS  Google Scholar 

  29. M. Schlüter:Nuovo Cimento,13 B, 313 (1973).

    Article  ADS  Google Scholar 

  30. R. E. Nahory, K. L. Shaklee, R. F. Leheny andJ. C. DeWinter:Solid State Comm.,9, 1107 (1971).

    Article  ADS  Google Scholar 

  31. T. Ugumori, K. Masuda andS. Namba:Phys. Lett.,38 A, 117 (1972).

    Article  ADS  Google Scholar 

  32. J. P. Voitchovsky andE. Mooser:Helv. Phys. Acta,45, 877 (1972).

    Google Scholar 

  33. A. Mercier, E. Mooser andJ. P. Voitchovsky:Journ. Luminescence,7, 241 (1973).

    Article  ADS  Google Scholar 

  34. T. Ugumori, K. Masuda andS. Namba:Solid State Comm.,12, 389 (1973).

    Article  ADS  Google Scholar 

  35. R. G. Wheeler andJ. O. Dimmock:Phys. Rey.,125, 1805 (1962).

    Article  ADS  Google Scholar 

  36. H. Hahn andG. Frank:Zeits. anorg. allg. Chem.,278, 340 (1955).

    Article  Google Scholar 

  37. F. Jellinek andH. Hahn:Zeits. Naturforsch.,16, 713 (1961).

    Google Scholar 

  38. Z. S. Basinski, D. B. Dove andE. Mooser:Helv. Phys. Acta,34, 373 (1961).

    Google Scholar 

  39. G. F. Koster,J. O. Dimmock,R. G. Wheeler andH. Statz:Properties of the Thirty-Two Point Groups (Cambridge, Mass., 1963).

  40. R. S. Knox:Solid State Physios, Suppl. 5 (New York, 1963).

  41. J. O. Dimmock:Semiconductors and Semimetals, Vol.3 (New York, 1967), p. 259.

    Article  Google Scholar 

  42. D. G. Thomas andJ. J. Hopfield:Phys. Rev.,124, 657 (1961).

    Article  ADS  Google Scholar 

  43. Y. Onodera andY. Toyozawa:Journ. Phys. Soc. Japan,22, 833 (1967).

    Article  ADS  Google Scholar 

  44. F. Bassani and M.Schlüter: in preparation.

  45. Ch. Depeursinge andM. Py: Travail de diplôme, EPFL 1972, unpublished.

  46. J. L. Brebner andJ. A. Déverin:Helv. Phys. Acta,38, 650 (1965).

    Google Scholar 

  47. J. J. Hopfield andD. G. Thomas:Journ. Phys. Chem. Sol.,12, 276 (1960).

    Article  ADS  Google Scholar 

  48. P. C. Leung, G. Andermann, W. G. SpitzeR andC. A. Mead:Journ. Phys. Chem. Sol.,27, 849 (1966).

    Article  ADS  Google Scholar 

  49. G. Ottaviani,C. Canali,Ph. Schmid,M. Schlüter,E. Mooser andE. Minder: in preparation.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooser, E., Schlüter, M. The band-gap excitons in gallium selenide. Nuov Cim B 18, 164–208 (1973). https://doi.org/10.1007/BF02832647

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02832647

Navigation