Skip to main content
Log in

Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hanyga,Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. A458 (2002), 933–957.

    MATH  MathSciNet  Google Scholar 

  2. Ch. Fox,The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc.98 (1961), 395–429.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Huang and F. Liu,The time fractional diffusion equation and fractional advection-dispersion equation, ANZIAM J.46 (2005), 1–14.

    MathSciNet  Google Scholar 

  4. F. Huang and F. Liu,The fundamental solution of the space-time fractional advection-dispersion equation, J. Appl. Math. & Computing18(1-2) (2005), 339–350.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Mainardi,Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons and Fractals7 (1996), 1461–1477.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Mainardi, Y. Luchko and G. Pagnini,The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal.4 (2001), 153–192

    MATH  MathSciNet  Google Scholar 

  7. G. Samko, A. Kilbas and O. Marichev,Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Amsterdam, 1993.

    MATH  Google Scholar 

  8. H. Beyer and S. Kempfle,Definition of physically consistent damping laws with fractional derivatives, Z. Angew Math. Mech.75 (1995), 623–635.

    MATH  MathSciNet  Google Scholar 

  9. I. Podlubny,The laplace transform method for linear differential equations of fractional order, Slovac Academy of Science, Slovak Republic, 1994.

    Google Scholar 

  10. I. Podlubny,Fractional differential equations, Academic Press, San Diego, CA, 1999.

    MATH  Google Scholar 

  11. K. B. Oldham and J. Spanier,The fractional calculus, Academic Press, New York, 1974

    MATH  Google Scholar 

  12. L. Debnath and D. Bhatta,Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics, Fract. Calc. Appl. Anal., 7, No 1 (2004), pp. 21–36.

    MATH  MathSciNet  Google Scholar 

  13. L. M. Campos,On the solution of some simple fractional differential equations, Internat. J. Math. & Math. Sci.13(3) (1990), 481–496.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Wyss and W. Wyss,Evolution, its fractional extension and generalization, Fract. Calc. Appl. Anal.4(3) (2001), 273–284.

    MATH  MathSciNet  Google Scholar 

  15. N. Asmar,Partial differential equations and boundary value problems, Prentice Hall, New Jersey (1999).

    Google Scholar 

  16. R. Gorenflo and F. Mainardi,Fractional calculus: Integral and differential equations of fractional order: From, Fractals and fractional calculus, Carpinteri & Mainardi, New York, 1997.

    Google Scholar 

  17. R. Gorenflo and F. Mainardi,Fractional calculus and stable probability distributions, Arch. Mech.50 (1998), 377–388.

    MATH  MathSciNet  Google Scholar 

  18. S. Miller and B. Ross,An introduction to the fractional calculus and fractional differential eqautions, John Wiley & Sons, USA, 1993.

    Google Scholar 

  19. W. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30 (1989), 134–144.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Wyss,The fractional Black-Scholes equation, Fract. Calc. Appl. Anal.3(1) (2000), 51–61.

    MATH  MathSciNet  Google Scholar 

  21. Y. Luchko and H. Srivastava,The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl.29 (1995), 73–85.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Luchko and R. Gorenflo,Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal.3(1) (1998), 63–78.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaher Momani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momani, S., Odibat, Z.M. Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J. Appl. Math. Comput. 24, 167–178 (2007). https://doi.org/10.1007/BF02832308

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02832308

AMS Mathematics Subject Classification

Key words and phrases

Navigation