Skip to main content
Log in

Solitary waves in media with dispersion and dissipation (a review)

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The latest results relating to the theory of nonlinear waves in dispersive and dissipative media are reviewed. Attention is concentrated on small-amplitude solitary waves and, in particular, on the classification of types of solitary waves, their conditions of existence, the evolution of local perturbations associated with the presence of solitary waves of various types, and problems of the existence of nonlinear waves localized with respect to a particular direction as the space dimension increases (spontaneous dimension breaking). As examples of dispersive and dissipative media admitting plane solitary waves of various types, we consider a cold collisionless plasma, an ideal incompressible fluid of finite depth beneath an elastic plate and with surface tension, and a fluid in a rapidly oscillating rectangular vessel (Faraday resonance). Examples of spontaneous dimension breaking are considered for the generalized Kadomtsev-Petviashvili equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Akylas, "Envelope solutions with stationary crest,"Phys. Fluids A.,5, 789 (1993).

    Article  MATH  ADS  Google Scholar 

  2. T. R. Akylas and T. S. Yang, "On short-scale oscillatory tails of long wave disturbances,"Stud. Appl. Math.,94, 1 (1995).

    MATH  MathSciNet  Google Scholar 

  3. T. R. Akylas and R. H. Grimshaw, "Solitary internal waves with oscillatory tails,"J. Fluid Mech.,242, 279 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. J. Amick and K. Kirchgässner, "A theory of solitary water waves in the presence of surface tension,"Arch. Rat. Mech. Anal.,105, 1 (1989).

    Article  MATH  Google Scholar 

  5. C. J. Amick and J. F. Toland, "On solitary water-waves of finite amplitude,"Arch. Rat. Mech. Anal.,76, 9 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  6. C. J. Amick and R. E. L. Turner, "A global theory of internal solitary waves in two-fluid systems,"Trans. Amer. Math. Soc.,298, 431 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. J. Amick and R. E. L. Turner, "Small internal waves in two-fluid systems,"Arch. Rat. Mech. Anal.,108, 111 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Bakholdin and A. Il’ichev, "Radiation and modulational instability described by the fifth order Korteweg-de Vries equation,"Contemporary Mathematics, Providence: Amer. Math. Soc.,200, 1 (1996).

    MathSciNet  Google Scholar 

  9. I. Bakholdin and A. Il’ichev, "Solitary-wave decay in a cold plasma,"J. Plasma Phys.,60, 569 (1998).

    Article  ADS  Google Scholar 

  10. I. Bakholdin and A. Il’ichev, "Solitary wave decay in nonlinear Faraday resonance,"Eur. J. Mech. B/Fluids,18, 569 (1999).

    Article  MathSciNet  Google Scholar 

  11. J. T. Beale, "The existence of solitary water waves,"Comm. Pure Appl. Math.,30, 373 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  12. T. B. Benjamin, "The stability of solitary waves,"Proc. Roy. Soc. London, Ser. A,328, No. 1573, P. 153 (1972).

    ADS  MathSciNet  Google Scholar 

  13. T. B. Benjamin and J. E. Feir, "The disintegration of wave trains on deep water. Part 1,"J. Fluid Mech.,27, 417 (1967).

    Article  MATH  ADS  Google Scholar 

  14. E. S. Benilov, R. Grimshaw, and E. P. Kuznetsova, "The radiation of radiating waves in a singularly-perturbed Korteweg de Vries equation,"Physica D. 69, 270 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. J. L. Bona, "On the stability theory of solitary waves,"Proc. Roy. Soc. London, Ser. A,344, No. 1638, P. 363 (1975).

    MATH  ADS  MathSciNet  Google Scholar 

  16. J. L. Bona and R. L. Sachs, "The existence of internal solitary waves in a two-fluid system near the KdV limit,"Geophys. Astrophys. Fluid Dynamics,48, No. 1–3, 25 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J. P. Boyd, "Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation,"Physica D,48, 129 (1991).

    Article  ADS  MATH  Google Scholar 

  18. B. Buffoni, A. R. Champneys, and J. F. Toland, "Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system,"J. Dynam. Different. Equat.,8, 221 (1996).

    Article  MathSciNet  Google Scholar 

  19. F. Dias and A. Il’ichev, "Ondes solitaires internes caracterisées par des oscillations à l’infini," in:Proc. 6e journées de l’hydrodynamique, Nantes (1997), P. 429.

  20. F. Dias and G. Iooss, "Capillary-gravity solitary waves with damped oscillations,"Physica D,65, 399 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. F. Dias and G. Iooss, "Ondes solitaires "noires" à l’interface entre deux fluides en présence de tension superficielle,"C. R. Acad. Sci. Paris Ser. 1,319, 89 (1994).

    MATH  MathSciNet  Google Scholar 

  22. L. K. Forbes, "Surface waves of large amplitude beneath an elastic sheet. Pt. 1. High order series solution,"J. Fluid. Mech.,169, 409 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. L. K. Forbes, "Surface waves of large amplitude beneath an elastic sheet. Pt. 1. Galerkin solutions,"J. Fluid. Mech.,188, 491 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. K. O. Friedrichs and D. H. Hyers, "The existence of solitary waves,"Comm. Pure Appl. Math.,7, 517 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  25. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, "Method for solving the Korteweg-de Vries equation,"Phys. Rev. Lett,19, 1095 (1967).

    Article  MATH  ADS  Google Scholar 

  26. M. Grillakis, J. Shatah, and W. Strauss, "Stability theory of solitary waves in the presence of symmetry. I,"J. Funct. Anal.,74, 160 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Grimshaw and N. Joshi, "Weakly nonlocal solitary waves in a singularly perturbed Korteweg-de Vries equation,"SIAM J. Appl. Math.,55, 124 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Malomed, and E. Benilov, "Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation,"Physica D,77, 473 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. M. Haragus-Courcelle and A. Il’ichev, "Three-dimensional solitary waves in the presence of additional surface effects,"Eur. J. Mech. B/Fluids,18, 569 (1999).

    Google Scholar 

  30. J. K. Hunter and J. Scheurle, "Existence of perturbed solitary wave solutions to a model equation for water waves,"Physica D,32, 253 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii,Theory of Solitons [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  32. A. T. Il’ichev, "Theory of nonlinear waves described by fifth-order evolution equations,"Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 99 (1990).

    Google Scholar 

  33. A. T. Il’ichev, "Properties of a nonlinear fifth-order evolution equation describing wave processes in weakly dispersive media.Proc. Steklov Math. Inst.,186, 222 (1989).

    MathSciNet  Google Scholar 

  34. A. T. Il’ichev, "Existence of a family of soliton-like solutions of the Kawahara equation,"Mat. Zametki,52, No. 1, 42 (1996).

    MathSciNet  Google Scholar 

  35. A. T. Il’ichev, "Solitary waves in a cold plasma,"Mat. Zametki,59, No. 5, 719 (1996).

    MathSciNet  Google Scholar 

  36. A. T. Il’ichev, "The existence of solitary waves in dispersive media,"Bull. Russ. Acad. Sci. Phys.: Suppl.: Phys. Vibr.,59, No. 2, 98 (1995).

    Google Scholar 

  37. A. T. Il’ichev, "Solitary and generalized solitary waves in dispersive media,"Prikl. Mat. Mekh.,61, 606 (1997).

    MATH  MathSciNet  Google Scholar 

  38. A. Il’ichev, "Steady waves in a cold plasma,"J. Plasma Phys.,55, No. 2, 181 (1996).

    ADS  Google Scholar 

  39. A. T. Il’ichev, "Envelope solitary waves in a cold plasma,"Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 154 (1996).

  40. A. Il’ichev, "Faraday resonance: Asymptotic theory of surface waves,"Physica D,119, 327 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Il’ichev, "Self-channeling of surface water waves in the presence of an additional surface pressure,"Eur. J. Mech. B/Fluids,18, 501 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. A. Il’ichev and K. Kirchgässner, "Nonlinear water waves beneath an elastic ice-sheet," in:Sonderforschungsbereich 404. Mehrfeldprobleme in der Kontinuumsmechanik, Stuttgart: Uni-Stuttgart, Bericht 98/19 (1998), P. 1.

    Google Scholar 

  43. A. T. Il’ichev and A. V. Marchenko, "Propagation of long nonlinear waves in a heavy liquid beneath an ice sheet,"Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 88 (1989).

  44. A. T. Il’ichev and A. Yu. Semenov, "Stability of subcritical solitary wave solutions to fifth order evolution equation,"Preprint No. 28. General Physics Institute, USSR Acad. Sci., Moscow (1991).

  45. A. T. Il’ichev and A. Yu. Semenov, "Orbital stability of limiting states in the theory of long waves with an additional pressure,"Dokl. Akad. Nauk SSSR,321, 505 (1991).

    MathSciNet  Google Scholar 

  46. A. T. Il’ichev and A. Yu. Semenov, "Stability of solitary waves in dispersive media described by a fifth-order evolution equation,"Theoret. Comput. Fluid Dynamics,3, No. 6, 307 (1992).

    Article  MATH  ADS  Google Scholar 

  47. G. Iooss and M. Adelmeyer,Topics in Bifurcation Theory and Applications, World Scientific, Singapore (1992).

    MATH  Google Scholar 

  48. G. Iooss and K. Kirchgässner, "Bifurcation d’ondes solitaires en présence d’une faible tension superficielle,"C. R. Acad. Sci. Paris Ser. 1.311, 265 (1990).

    MATH  Google Scholar 

  49. G. Iooss and K. Kirchgässner, "Water waves for small surface tension: An approach via normal form,"Proc. Roy. Soc. Edinburgh. Ser. A,122A, 267 (1992).

    Google Scholar 

  50. G. Iooss and M. G. Perouème, "Perturbed homoclinic solutions in reversible 1:1 resonance vector fields,"J. Differents. Equat.,102, 62 (1993).

    Article  MATH  Google Scholar 

  51. K. Kakutani, T. Kawahara, and T. Taniuti, "Nonlinear hydromagnetic solitary waves in a collision-free plasma with isothermal electron pressure,"J. Phys. Soc. Japan,23, 1138 (1967).

    ADS  Google Scholar 

  52. T. Kakutani and H. Ono, "Weak non-linear hydromagnetic waves in a cold collision-free plasma,"J. Phys. Soc. Japan,26, 1305 (1969).

    Article  ADS  Google Scholar 

  53. T. Kawahara, "Oscillatory solitary waves in dispersive media,"J. Phys. Soc. Japan,33, 260 (1972).

    Article  ADS  Google Scholar 

  54. K. Kirchgässner, "Wave solutions of reversible systems and applications,"J. Differents. Equat.,45, 113 (1982).

    Article  MATH  Google Scholar 

  55. D. J. Korteweg and G. de Vries, "On the change of form of long waves advancing in a rectangular channel and a new type of long stationary waves,"Phil. Mag. (5),39, 422 (1895).

    Google Scholar 

  56. M. A. Lavrent’ev, "On the theory of long waves," in:Zbirn. Prats. Inst. Matem. AN URSR, No. 8 [in Ukrainian], Kiev (1947), p. 13.

  57. E. Lombardi, "Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves,"Arch. Rat. Mech. Anal.,137, 227 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  58. M. S. Longuet-Higgins, "Capillary-gravity waves of solitary type and envelope solitons on deep water,"J. Fluid Mech.,252, 703 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. A. V. Marchenko, "Long waves in a shallow fluid beneath an ice sheet,"Prikl. Mat. Mekh.,52, 230 (1988).

    Google Scholar 

  60. A. Mielke, "Reduction of quasilinear elliptic equations in cylindrical domains with applications,"Math. Meth. Appl. Sci.,10, 501 (1988).

    Article  MathSciNet  Google Scholar 

  61. A. Mielke, "Homoclinic and heteroclinic solutions in two-phase flow," in:Adv. Series Nonl. Dynamics: Structure and Dynamics of Nonlinear Waves in Fluids, Vol. 7, World Scient., Singapore (1995), P. 353.

    Google Scholar 

  62. J. W. Miles, "Parametrically excited solitary waves,"J. Fluid Mech.,148, 451 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Y. Pomeau, A. Ramani, and B. Grammaticos, "Structural stability of the Korteweg-de Vries solitons under a singular perturbation,"Physica D,31, 127 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. R. L. Sachs, "On the existence of small amplitude solitary waves with strong surface tension,"J. Differents. Equat.,90, 31 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  65. S. M. Sun and M. C. Shen, "Exact theory of generalized solitary waves in a two-layer liquid in the absence of surface tension,"J. Math. Anal. Appl.,180, 245 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  66. Y. Yamamoto and E. Takizawa, "On a solution of nonlinear time evolution equation of fifth order,"J. Phys. Soc. Japan,50, 1421 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  67. A. Vanderbauwhede and G. Iooss, "Center manifold theory in infinite dimensions," in:Dynamics Reported, Vol. 1, Springer, Berlin (1992), P. 125.

    Google Scholar 

  68. J. Zufiria, "Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth,"J. Fluid Mech.,184, 183 (1987).

    Article  MATH  ADS  Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–27. March–April, 2000.

The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 99-0101150).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’ichev, A.T. Solitary waves in media with dispersion and dissipation (a review). Fluid Dyn 35, 157–176 (2000). https://doi.org/10.1007/BF02831423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831423

Keywords

Navigation