Skip to main content
Log in

Metallic softness influence on magic numbers of clusters

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The metallic softness parameterαr 0 determines the structure of the cluster and governs the rule of magic numbers. Using molecular dynamic method, the stable structures and magic numbers are determined for the clusters consisting of 13 up to 147 atoms in medium range Morse potentials, which is suitable for most of metals. As the number of atoms constituting the cluster increases, the stable structures undergo transition from face-centered (FC) to edge-centered (EC) structures. The magic number take ones of FC series before transition and take ones of EC series after that. The transition point from FC to EC structures depends on the value of softness parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Northby J A. Structure and Binding of Lennard-Jones Clusters: 13≤N≤147.J Chem Phys, 1987,86: 6166.

    Article  Google Scholar 

  2. Doye J P K, Wales D J, Berry R S. The Effect of the Range of the Potential on the Structure of Clusters.J Chem Phys, 1995,103: 4234.

    Article  Google Scholar 

  3. Doye J P K, Wales D J. The Structure and Stability of Atomic Liquids: from Clusters to Bulk.Science, 1996,271: 484.

    Article  Google Scholar 

  4. Doye J P K, Wales D J. Structural Consequences of the Range of the Interatomic Potential a Menagerie of Clusters.J Chem Soc Faraday Trans, 1997,93: 4233.

    Article  Google Scholar 

  5. Montejano-Carrizales J M, Iniguez M P, Alonso J A,et al. Theoretical Study of Icosahedral Ni Clusters Within the Embedded-Atom Method.Phys Rev B, 1996,54: 5961.

    Article  Google Scholar 

  6. Ikeshoji T, Hafskjold B, Hashi Y,et al. Molecular Dynamics Simulation for the Formation of Magic Number Clusters with a Lennard-Jones Potential.Phys Rev Lett, 1996,76: 1792.

    Article  Google Scholar 

  7. Martin T P. Shells of Atoms.Phys Rep, 1996,273: 199.

    Article  Google Scholar 

  8. Broyer M. Metallic Character of Small Metal Aggregates as a Function of Their Atomic Structures.J Noncryst Solids, 1994,156–158: 783.

    Google Scholar 

  9. De Heer W A. The Physics of Simple Metal Clusters: Experimental Aspects and Simple Models.Rev Mod Phys, 1993,65: 611.

    Article  Google Scholar 

  10. Brack M. The Physics of Simple Metal Clusters: Self-Consistant Jellium Model and Semiclassical Approaches.Rev Mod Phys, 1993,65: 677.

    Article  Google Scholar 

  11. Nagaev E L. Equilibrium and Quasiequilibrium Properties of Small Particles.Phys Rep, 1992,222: 199.

    Article  Google Scholar 

  12. Upperbrink, Wales D J. Packing Schemes for Lennard-Jones Cluster of 13 to 150 Atoms: Minima, Transition States and Rearrangement Mechanisms.J Chem Soc Faraday Trans, 1991,87: 215.

    Article  Google Scholar 

  13. Martin T P, Bergmann T, Gohlich H,et al. Shell Structure of Clusters.J Phys Chem, 1991,95: 6421.

    Article  Google Scholar 

  14. Pan J, Ramakrishna M V. Magic Numbers of Silicon Clusters.Phys Rev B, 1994,50: 5431.

    Article  Google Scholar 

  15. Freeman D L, Doll J D. Computationals Studies of Clusters: Methods and Results.Annu Rev Phys Chem, 1996,47: 43.

    Article  Google Scholar 

  16. Parks E K, Zhu L, Ho J,et al. The Structure of Small Nickel Clusters: I. Ni3−Ni15.J Chem Phys, 1994,100: 7206.

    Article  Google Scholar 

  17. Cleveland C L, Landman U. The Energetics and Sturcture of Nickel Clusters: Size Dependence.J Chem Phys, 1991,94: 7376.

    Article  Google Scholar 

  18. Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals.Phys Rev, 1959,114, 687.

    Article  Google Scholar 

  19. Farges J, de Faraday M F, Raoult B,et al. Noncrystalline Tructure of Argon Cluster. I. Polylcosahedral structure of ArN clusters, 20<N<50.J Chem Phys, 1983,78: 5067.

    Article  Google Scholar 

  20. Martin T P, Naher U, Bergmann T,et al. Observation of Icosahedral Shells and Subshells in Calcium Clusters.Chem Phys Lett, 1991,183: 119.

    Article  Google Scholar 

  21. Harris I A, Norman K A, Mulkern R V,et al. Icosahedral Structure of Large Charged Argon Clusters.Chem Phys Lett, 1986,130: 316.

    Article  Google Scholar 

  22. Sung M W, Kawai R, Weare J H. Packing Transitions in Nanosized Li Clusters.Phys Rev Lett, 1994,73: 3552.

    Article  Google Scholar 

  23. Harris I A, Kidwell R S, Northby J A. Structure of Charged Argon Clustes Fromed in a Free Jet Expansion.Phys Rev Lett, 1984,53: 2390.

    Article  Google Scholar 

  24. Rayane D, Melinon P, Cabaud B,et al. Close-Packing Structure of Small Barium Clusters.Phys Rev A, 1989,39: 6056.

    Article  Google Scholar 

  25. Parks E K, Zhu L, Ho J,et al. The Structure of Small Nickel Clusters, II. Ni16−Ni28.J Chem Phys, 1995,102: 7377.

    Article  Google Scholar 

  26. Parks E K, Winter B J, Klots T D,et al. Evidence for Polyicosahedral Structure in Ammoniated Iron, Cobalt, and Nickel Clusters.J Chem Phys, 1992,96: 8267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (19674042, 19834070), Science and Technology Program of National Education Ministry of China

Biography: Liu Hao-yang (1975-), male, Ph. D, candidate, research direction: liquid physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao-yang, L., Xian-wu, Z., Da-zhi, R. et al. Metallic softness influence on magic numbers of clusters. Wuhan Univ. J. Nat. Sci. 5, 301–306 (2000). https://doi.org/10.1007/BF02830140

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830140

Key words

CLC number

Navigation