Skip to main content
Log in

Solutions of the octonion wave equation and the theory of functions of an octonion variable

Решения октонионных волновых уравнений и теория функций октонионной переменной

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The equivalence between the octonion wave equation and the regularity condition for functions of an octonion variable with a condirion form of an octonion wave equation and is extended to an octonion equation equipped with four-dimensional mass space. The theory of functions of a split (complex)-octonion variable is developed and the solutions of the octonion wave equation and that of an extended Proca's equation are given within this framework.

Riassunto

Si illustra l'equivalenza tra l'equazione d'onda ottonionica e la condizione di regolarità per funzioni di una variabile ottonionica con una condizione su extracoordinate. L'equazione di Proca si pone nella forma di un'equazione d'onda ottonionica e si estende a un'equazione ottonionica con uno spazio di massa a 4 dimensioni. Si sviluppa la teoria delle funzioni di una variabile ottonionica separata (complessa) e si danno le soluzioni dell'equazione d'onda ottonionica e dell'equazione di Proca estesa in questo contesto.

Резюме

Показывается эквивалентность между октонионным волновым уравнением и условием регулярноси для функций октонионной переменной с условием на дополнительные координаты. Уравнение Прока представляется в форме октонионного волнового уравнения и обобщается на октонионное уравнение, снабженное четырехмерным массовым пространством. Развивается теория функций расщепленной (комплексной) октонионной переменной. В рамках предложенного подхода записываются решения октонионного волнового уравнения и решения обобщенного уравнения Прока.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a)K. Imaeda:Prog. Theor. Phys.,5, 133 (1950);b) Memoirs of the Faculty of Liberal Arts and Education, Yamanashi University, No. 2, 111 (1951); No. 3, 105 (1952);c) Nuovo Cimento B,32, 136 (1976);d) Report, Fundamental Physics Laboratory,Quaternionic Formulation of Classical Electrodynamics, Vol.1 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Penney:Am. J. Phys.,36, 871 (1968);Nuovo Cimento B,3, 95 (1971).

    Article  ADS  Google Scholar 

  3. M. Günaydin andF. Gürssey:J. Math. Phys. (N. Y.),14, 1651 (1973).

    Article  Google Scholar 

  4. F. Gürsey:To Fulfill a Vision, Jerusalem Einstein Centennial Symposium on Gauge Theories and Unification of Physical Forces, edited byY. Ne'eman (Addison-Wesley Pub. Co. Inc., Reading, Mass., 1981), p. 22.

    Google Scholar 

  5. F. Englart:Phys. Lett. B,119, 339 (1982).

    Article  ADS  Google Scholar 

  6. M. Rooman:Nucl. Phys. B,236, 501 (1984);F. Gürsey andC.-H. Tze:Phys. Lett. B,122, 191 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Dündarer, F. Gürsey andC.-H. Tze:Nucl. Phys. B,266, 440 (1986).

    Article  ADS  Google Scholar 

  8. G. C. Joshi:Lett. Nuovo Cimento,44, 449 (1985).

    Article  MathSciNet  Google Scholar 

  9. P. Dentoni andM. Sce:Rend. Sem. Mat. Univ. Padova,50, 251 (1973).

    MathSciNet  Google Scholar 

  10. K. Imaeda andM. Imaeda:Bull. Okayama Univ. Science A,19, 93 (1984).

    Google Scholar 

  11. a)K. Imaeda:Nuovo Cimento B,32, 138 (1976);b) inClifford Algebras and Their Applications in Mathematical Physics, edited byJ. S. R. Chisholm andA. K. Common (Reidel Pub. Co., Dordrecht, 1986), p. 495.

    Article  ADS  MathSciNet  Google Scholar 

  12. a)K. Imaeda andM. Imaeda:Bull. Okayama Univ. Science A,20, 133 (1985);b)J. S. R. Chisholm andA. K. Commons (Reidel Pub. Co., Dordrecht, Holland 1985), p. 565.

    Google Scholar 

  13. J. D. Edmonds jr.:Found Phys.,7, 835 (1977);The Mystifying Methaphysics of Microreality (Mc Neese State University, October 1980).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Delange andF. Brackx:Proc. London Math. Soc.,37, 545 (1978).

    Article  MathSciNet  Google Scholar 

  15. J. Ryan:Complex Variables,1, 119 (1982).

    Article  Google Scholar 

  16. A. Proca:J. Phys. (Paris),7, 347 (1936);H. Yukawa, S. Sakata andM. Taketani:Proc. Phys. Math. Soc.,20, 319 (1938).

    Google Scholar 

  17. To generate a regular function of an octonion variable from an analytic function of a complex variable see ref(9,10). A generalization of the method to generate regular functions of a hypercomplex variable such as the Cayley-Dickson algebras and Clifford algebras is given in ref (12)a)K. Imaeda:Bull. Okayama Univ. Science A,20, 133 (1985). In ref.(12b)M. Imaeda: inClifford Algebras and Their Applications in Mathematical Physics, edited byJ. S. R. Chisholm andA. K. Commons (Reidel Pub. Co., Dordrecht, Holland 1985), p. 565.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imaeda, K., Tachibana, H., Imaeda, M. et al. Solutions of the octonion wave equation and the theory of functions of an octonion variable. Nuov Cim B 100, 53–71 (1987). https://doi.org/10.1007/BF02829776

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829776

PACS

Navigation