Skip to main content
Log in

On a geometrical theory of the electromagnetic field

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Weyl’s (1929) geometrical theory of gauge (phase) transformations for fermions and the electromagnetic field is generalized so as to apply to bosons as well. This is done by introducingcomplex base vectors. The resulting theory is closely related to the Einstein-Schrödinger theory in its Hermitian form, and enables one to identify the electromagnetic field tensor. Two physical consequences are deduced from the theory:a) The charges of all bosons are integer multiples of a basic charge,b) The direct interaction between a particle and the electromagnetic field is invariant under space reflexions and time reflexions. A theoretical criterion is suggested (based on the argument leading tob) for determining which interactions are parity conserving.

Riassunto

Si generalizza la teoria geometrica di Weyl (1929) delle trasformazioni di gauge (fase) per fermioni e per il oampo elettromagnetico in modo da renderla applicabile anche ai bosoni. Ciò si ottiene introducendo vettoricomplessi. La teoria che ne risulta è strettamente connessa alla teoria di Einstein-Schrödinger nella sua forma hermitiana e permette di identifleare il tensore elettromagnetico. Dalla teoria si deducono due conseguenze flsiche:a) le cariche di tutti i bosoni sono multipli interi di una carica base; 6) l’interazione diretta tra una particella e il campo elettromagnetico è invariante per le riflessioni dello spazio e del tempo. Si propone un criterio teorico (basato su un argomento che conduce a b)) per determinare quali interazioni conservino la parità.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phys. Rev.,107, 632 (1957).

  2. The need for such a result has been emphasized byP. A. M. Dirac:Phys. Rev.,74, 817 (1948), andE. P. Wigner:Proc. Amer. Phil. Soc,93, 521 (1949), for both bosoris and fremions.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. D. Lee andC. N. Yang:Phys. Rev.,104, 254 (1956).

    Article  ADS  Google Scholar 

  4. H. Weyl:Proc. Nat. Acad. Sci.,15, 323 (1929);Zeits. f. Phys.,56, 330 (1929);Phys. Rev.,77, 699 (1950).

    Article  ADS  MATH  Google Scholar 

  5. H. Weyl:Space-Time-Matter (New York, 1951), p. 282.

  6. V. Fock:Zeits. f. Phys.,57, 261 (1929);E. Schrödinger:Berl. Ber., 105 (1932);L. Infeld andB. L. v. dee Waerden:Berl. Ber., 380 (1933);W. L. Bade andH. Jehle:Rev. Mod. Phys.,25, 714 (1953);P. G. Bergmann:Phys. Rev.,107, 624 (1957).

    Article  ADS  MATH  Google Scholar 

  7. W. Pauli:Rev. Mod. Phys.,13, 203 (1941).

    Article  ADS  Google Scholar 

  8. Cf.H. Weyl:Proc. Nat. Acad. Sci.,15, 323 (1929), bottom of p. 329.

    Article  ADS  MATH  Google Scholar 

  9. A. Einstein:Rev. Mod. Phys.,20, 35 (1948).

    Article  ADS  Google Scholar 

  10. E. Schbödinger:Space-Time Structure (Cambridge, 1950).

  11. M.-A. Tonnelat:La Théorie du Champ Unifié d’Einstein (Paris, 1955).

  12. L. P. Eisenhart:Riemannian Geometry (Princeton, 1926), Chap. III.

  13. F. D. Murnaghan:The Theory of Group Representations (Baltimore, 1938), p. 352.

  14. L. Rosenfeld:Acad. Roy. Belg.,18, No. 6 (1940).

  15. R. Brauer andH. Weyl:Am. Journ. Math.,57, 425 (1935);W. Pauli:Ann. Inst. E. Poinearé,6, 109 (1936).

    Article  MathSciNet  Google Scholar 

  16. E. M. Corson:Introduction to Tensors, Spinors and Relativistic Wave Equations (London, 1953), p. 40.

  17. J. Callaway:Phys. Rev.,92, 1567 (1953);W. B. Bonnor:Ann. Inst. H. Poincaré,15, 133 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D. W. Sciama:Proc. Camb. Phil. Soc,54, 72 (1958); cf. alsoO. Costa de, Beauregard:Journ. de Math.,22, 85 (1943) especially footnote 1 on p. 129.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. G. Wentzel:Quantum Theory of Fields (New York, 1949), p. 60.

  20. PI. Weyl:The Classical Groups (Princeton, 1946), p. 194.

  21. C. S. Wu, E. Ambler, K. W. Hayward, D. D. Hoppes andR. P. Hudson:Phys. Rev.,105, 1413 (1957);R. L. G-arwin, L. M. Lederman andM. Weinrich:Phys. Rev.,105, 1415 (1957);J. I. Friedman andV. L. Telegdi:Phys. Rev.,105, 1681 (1957).

    Article  ADS  Google Scholar 

  22. Cf.P. A. M. Dirac:Rev. Mod. Phys.,21, 392 (1949);J. M. Jauch andF. Rohrlich:The Theory of Photons and Electrons (Cambridge, Mass., 1955), p. 86.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciama, D.W. On a geometrical theory of the electromagnetic field. Nuovo Cim 8, 417–431 (1958). https://doi.org/10.1007/BF02828748

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02828748

Navigation