Skip to main content
Log in

Euclidean hyperspace and its physical significance

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Contemporary approaches to quantum field theory and gravitation often use a four-dimensional space-time manifold of Euclidean signature (which we call “hyperspace”) as a continuation of the Lorentzian metric. To investigate what physical sense this might have we review the history of Euclidean techniques in classical mechanics and quantum theory. Schwinger’s Euclidean postulate gives a fundamental significance to such techniques and leads to a clearer understanding of the TCP theorem in terms of space-time uniformity. This is closely related to the principle of identicality that characterizes non-relativistic quantum theory. In quantum gravity we suggest that the Hartle-Hawking treatment of the wave function of the universe rests on a notion of space-time uniformity which can be related to the Euclidean postulate as a kind of “perfect cosmological principle” on the unobservable wave function of the universe which eliminates anya priori asymmetry between space and time. Euclidean hyperspace may mediate between the infinite-dimensional Hubert space of quantum theory (whose metric is Euclidean) and the four-dimensional Lorentzian space-time of physical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger:Particles, Sources, and Fields (Addison-Wesley, Reading, Mass., 1970 and 1973), 2 Vols.

    Google Scholar 

  2. P. D. Peśić:Am. J. Phys.,59, 971, 975 (1991); a paper considering arguments for the fundamentally of the principle of identicality is in preparation.

    Article  ADS  Google Scholar 

  3. H. Goldstein:Am. J. Phys.,43, 737 (1975);44; 1123 (1976).

    Article  ADS  Google Scholar 

  4. W. Pauli:Z. Phys.,36, 336 (1926).

    Article  ADS  MATH  Google Scholar 

  5. See L. Schiff:Quantum Mechanics (McGraw-Hill, New York, N.Y., 1968), pp. 234–239.

    Google Scholar 

  6. M. Bander andC. Itzykson:Rev. Mod. Phys.,38, 330, 346 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Flamm:Phys. Z,17, 448 (1916); seeJ. Eisenstaedt: inEinstein and the History of General Relativity, edited byD. Howard andJ. Stachel (Birkhäuser, Boston, Mass., 1989), pp. 237–238.

    Google Scholar 

  8. F. Bloch:Z. Phys.,74, 295 (1932).

    Article  ADS  Google Scholar 

  9. G. C. Wick:Phys. Rev.,96, 1124 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. Schwinger:Proc. Nat. Acad. Sei USA,44, 223, 956 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. S. W. Hawking:Phys. Rev. D,37, 904 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Anderson andB. DeWitt: inBetween Quantum and Cosmos, edited byW. H. Zurek, A. van der Meerwe andW. A. Miller (Princeton University Press, Princeton, N.J., 1988), pp. 76–77.

    Google Scholar 

  13. A. Folacci:Phys. Rev. D,46, 2553 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  14. P. O. Mazur andE. Mottola:Nucl Phys. B,341, 187 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. G. F. R. Ellis:Gen. Rel. Grav.,24, 1047 (1992).

    Article  ADS  MATH  Google Scholar 

  16. T. Dereli andR. W. Tucker:Class. Quantum Gran,10, 365 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. B. Hartle andS. W. Hawking:Phys. Rev. D,28, 2960 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. F. Streater andA. S. Wightman:PCT, Spin and Statistics, and All That (W. A. Benjamin, New York, N.Y., 1964), p. 9 and ff.; see alsoR. P. Feynman:Elementary Particles and the Laws of Physics (Cambridge University Press, Cambridge, 1987), p. 8 and ff.

    MATH  Google Scholar 

  19. J. Schwinger:Particles, Sources, and Fields, (Addison-Wesley, Reading, Mass., 1970 and 1973), Vol. 1, p. 42.

    MATH  Google Scholar 

  20. J. Schwinger:Particles, Sources, and Fields, (Addison-Wesley, Reading, Mass., 1970 and 1973), Vol.1, p. 44; note that Schwinger uses the term “Minkowskian” for the space-time which we will call “Lorentzian”, following what seems to be the more prevalent usage.

    Google Scholar 

  21. J. Schwinger:Particles, Sources, and Fields, (Addison-Wesley, Reading, Mass., 1970 and 1973), Vol. 1, p. 47.

    Google Scholar 

  22. P. Roman:Introduction to Quantum Field Theory (Wiley, New York, N.Y., 1969), p. 382–387.

    MATH  Google Scholar 

  23. J. Schwinger:Particles, Sources, and Fields, (Addison-Wesley, Reading, Mass., 1970 and 1973), Vol. 1, pp. 111–113, 139–140.

    Google Scholar 

  24. E. Cartan:The Theory of Spinors (Dover, New York, N.Y., 1961), pp. 114–116.

    Google Scholar 

  25. E. Cartan:The Theory of Spinors (Dover, New York, N.Y., 1961), pp. 130–132.

    Google Scholar 

  26. D. Hestenes:Spacetime Algebra (Gordon and Breach, New York, N.Y., 1966);D. Hestenes:Am. J. Phys.,39, 1013 (1971);W. E. Baylis, J. Huschlit andJiansu Wei:Am. J. Phys.,60, 788 (1992).

    Google Scholar 

  27. H. Bondi:Cosmology (Cambridge University Press, Cambridge, 1988), pp. 11–15, 65–74.

    Google Scholar 

  28. C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (W. H. Freeman, San Francisco, Cal., 1973), p. 745.

    Google Scholar 

  29. C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (W. H. Freeman, San Francisco, Cal., 1973), pp. 429–431.

    Google Scholar 

  30. S. W. Hawking: inRecent Developments in Gravitation, edited byM. Levy andS. Deser (Plenum, New York, N.Y., 1979), pp. 146–147.

    Google Scholar 

  31. R. Bonola:Non-Euclidean Geometry (Dover, New York, N.Y., 1955), p. 164.

    MATH  Google Scholar 

  32. M. J. Greenberg:Euclidean and Non-Euclidean Geometries (W. H. Freeman, New York, N.Y., 1980), pp. 177 and ff., 237 and ff.

    Google Scholar 

  33. H. Minkowki inH. A. Lorentz, A. Einstein, H. Minkowski andH. Weyl:The Principle of Relativity (Dover, New York, N.Y., 1923), p. 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pešić, P.D. Euclidean hyperspace and its physical significance. Nuov Cim B 108, 1145–1153 (1993). https://doi.org/10.1007/BF02827310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02827310

PACS

PACS

PACS

PACS

Navigation