Skip to main content
Log in

Improvement of heterologous protein productivity through a selected bioprocess strategy and medium design

A case study for recombinantYarrowia lipolytica fermentation

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of polypeptide fractions of proteose peptone on the induction of cloned gene expression of rice α-amylase in recombinantYarrowia lipolytica which is under the control of itsXPR2 promoter, was studied. Gel-filtration chromatography with Sephacryl S-100 and Sephadex G-25 (coarse) gels was used to fractionate the active polypeptide fractions from the proteose peptone. The polypeptide size fractions that were effective for the induction of cloned gene expression ranged between mol wt of 1.0 and 6.0 kDa. The fed-batch culture experiments with active polypeptide fractions were performed in a 6-L fermenter. The specific productivity of α-amylase and the enzyme yield based on nitrogen source increased from 25.7 to 33.0 U/g cell·h and 4.96 to 6.73 U/(mg nitrogen consumed), respectively, when proteose peptone was replaced by active polypeptide fractions in production medium. The specific productivity of α-amylase and the enzyme yield further improved to 36.2 U/g cell·h and 8.14 U/(mg nitrogen consumed), respectively, when the glutamic acid-enriched active polypeptide fractions in the production medium was used. The specific productivity of α-amylase and the enzyme yield were improved by 41 and 64%, respectively, as compared with the results obtained with the medium containing proteose peptone. Through medium design, a bioprocess strategy for heterologous protein production was developed and a significant productivity improvement achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S. B., Ryu, D. D. Y., Siegel, R., and Park, S. H. (1988),Biotechnol. Bioeng. 31, 805–820.

    Article  CAS  Google Scholar 

  2. Raibound, E., Stanssens, P., and Fiers, F. W. (1981),Gene 15, 81–93.

    Article  Google Scholar 

  3. Yabuta, M., Onai-Miura, S., and Ohsuye, K. (1995),J. Biotechnol. 39, 67–73.

    Article  CAS  Google Scholar 

  4. Couderc, R., and Baratti, J. (1980),Agric. Biol. Chem. 44, 2279–2289.

    CAS  Google Scholar 

  5. Ogrydziak, D. M., Demain, A. L., and Tannenbaum, S. R. (1977),Biochim. Biophys. Acta 497, 528–535.

    Google Scholar 

  6. Blondeau, K., Boutur, O., Boze, H., Jung, G., Moulin, G., and Galzy, P. (1994),Appl. Microbiol. Biotechnol. 41, 324–329.

    Article  CAS  Google Scholar 

  7. Patkar, A. and Seo, J. H. (1992),Biotechnol. Bioeng. 40, 103–109.

    Article  CAS  Google Scholar 

  8. Hoffman, B. J., Broadwater, J. A., Johnson, P., Harper, J., Fox, B. G., and Kenealy, W. R. (1995),Protein Expression and Purification 6, 646–654.

    Article  CAS  Google Scholar 

  9. Vedvick, T., Buckholz, R. G., Engel, M., Urcan, M., Kinney, J., Provow, S., et al. (1991),J. Ind. Microbiol. 7, 197–201.

    Article  CAS  Google Scholar 

  10. Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990),Adv. Biochem. Eng. Biotechnol. 43, 75–102.

    CAS  Google Scholar 

  11. Davidow, L. S., O’Donnel, M. M., Kaczmarek, F. S., Pereirra, D. A., DeZeeuw, J. R., and Franke, A. E. (1987),J. Bacteriol. 169, 4621–4629.

    CAS  Google Scholar 

  12. Nicaud, J. M., Fournier, P., La Bonnardiere, C., Charles, M., and Gaillardin, C. (1991),J. Biotechnol. 19, 259–270.

    Article  CAS  Google Scholar 

  13. Tharaud, C., Ribet, A. M., Costes, C., and Gaillardin, C. (1992),Gene 121, 111–119.

    Article  CAS  Google Scholar 

  14. Franke, A. E., Kaczmarek, F. S., Eisenhard, M. E., Geoghegan, K. F., Danley, D. E., DeZeeuw, J. R., et al. (1988),Dev. Ind. Microbiol. 29, 43–57.

    CAS  Google Scholar 

  15. Chang, C. C. (1997), PhD thesis. University of California, Davis.

  16. Le Dall, M. T., Nicaud, J. M., and Gaillardin, C. (1994),Curr. Genet. 26, 38–44.

    Article  Google Scholar 

  17. Park, C. S., Chang, C. C., Kim, J. Y., Ogrydziak, D. M., and Ryu, D. D. Y. (1997),J. Biol. Chem. 272(11), 6876–6881.

    Article  CAS  Google Scholar 

  18. Kumagai, M. H., Shah, M., Terashima, M., Vrkljan, Z., Whitaker, J. R., and Rodriguez, R. L. (1990),Gene 94, 209–216.

    Article  CAS  Google Scholar 

  19. O’Neill, S. D., Kamagai, M. H., Majumdar, A., Huang, N., Sutliff, T. D., and Rodriguez, R. L. (1990),Mol. Gen. Genet. 221, 235–244.

    Article  CAS  Google Scholar 

  20. Ito, H., Fukuda, Y., Murata, A., and Kimura, A. (1983),J. Bacteriol. 153, 163–168.

    CAS  Google Scholar 

  21. Chang, C. C., Ryu, D. D. Y., Park, C. S., Kim, J. Y., and Ogrydziak, D. M. (1998),Appl. Microbiol. Biotechnol. 49, 531–537.

    Article  CAS  Google Scholar 

  22. Bernfeld, P. (1955),Methods Enzymol. 1, 149–158.

    Article  Google Scholar 

  23. Chang, C. C., Ryu, D. D. Y., Park, C. S., and Kim, J. Y. (1998),Biotechnol. Bioeng. 59, 379–385.

    Article  CAS  Google Scholar 

  24. Park, Y. S., Dohjima, T., and Okab, M. (1995),Biotechnol. Bioeng. 49, 36–44.

    Article  Google Scholar 

  25. Miyashiro, S., Enei, H., Hirose, Y., and Udaka, S. (1980),Agricultural Biol. Chem. 44, 105–112.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewey D. Y. Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Park, CS. & Ryu, D.D.Y. Improvement of heterologous protein productivity through a selected bioprocess strategy and medium design. Appl Biochem Biotechnol 74, 173–189 (1998). https://doi.org/10.1007/BF02825964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825964

Index Entries

Navigation