Skip to main content

Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungusScytalidium thermophilum


Glucoamylase produced byScytalidium thermophilum was purified 80-fold by DEAE-cellulose, ultrafiltration and CM-cellulose chromatography. The enzyme is a glycoprotein containing 9.8% saccharide, pI of 8.3 and molar mass of 75 kDa (SDS-PAGE) or 60 kDa (Sepharose 6B). Optima of pH and temperature with starch or maltose as substrates were 5.5/70 °C and 5.5/65 °C, respectively. The enzyme was stable for 1 h at 55 °C and for about 8 d at 4 °C, either at pH 7.0 or pH 5.5. Starch, amylopectin, glycogen, amylose and maltose were the substrates preferentially hydrolyzed. The activity was activated by 1 mmol/L Mg2+ (27%), Zn2+ (21%), Ba2+ (8%) and Mn2+ (5%).K m and {ie11-1} values for starch and maltose were 0.21 g/L, 62 U/mg protein and 3.9 g/L, 9.0 U/mg protein, respectively. Glucoamylase activity was only slightly inhibited by glucose up to a 1 mol/L concentration.

This is a preview of subscription content, access via your institution.


  • Cereia M., Terenzi H.F., Jorge J.A., Greene L.J., Rosa J.C., Polizeli M.L.T.M.: Glucoamylase activity from the thermophilic fungusScytalidium thermophilum. Biochemical and regulatory properties.J. Basic Microbiol.40, 83–92 (2000).

    Article  CAS  Google Scholar 

  • Chakraborty K., Bhattacharyya B.K., Sen S.K.: Purification and characterization of a thermostable α-amylase fromBacillus stearothermophilus.Folia Microbiol.45, 207–210 (2000).

    Article  CAS  Google Scholar 

  • Crabb W.D., Mitchinson C.: Enzymes involved in the processing of starch to sugars.Trends Biotechnol.15, 349–352 (1997).

    Article  CAS  Google Scholar 

  • Domingues C.M., Peralta R.M.: Production of amylase by soil fungi and partial biochemical characterization of amylase of a selected strain (Aspergillus fumigatusFresenius).Can. J. Microbiol.39, 681–685 (1993).

    CAS  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F.: Colorimetric method for determination of sugars and related substances.Anal. Chem.28, 350–356 (1956).

    Article  CAS  Google Scholar 

  • Guzmán-Maldonado H., Paredes-López O.: Amylolytic enzymes and products derived from starch: A review.Crit. Rev. Food Sci. Nutrit.35, 373–403 (1995).

    Article  Google Scholar 

  • Hata Y., Ishida H., Kojima Y., Ichikawa E., Kawato A., Suginami K., Imayasu S.: Comparation of two glucoamylases produced byAspergillus oryzae in solid-state culture (Koji) and in submerged culture.J. Ferment. Bioeng.84, 532–537 (1997).

    Article  CAS  Google Scholar 

  • James J.A., Lee B.H.: Glucoamylases: microbial sources, industrial applications and molecular biology—a review.J. Food Biochem.21, 1–52 (1997).

    Article  CAS  Google Scholar 

  • Jones R.L., Verner J.E.: The bioassay of gibberelins.Plant72, 155–161 (1967).

    Article  CAS  Google Scholar 

  • Kiss L., Berki L.K., Nanasi P.: Evidence for a single catalytic and two binding sites in the almond emulsin β-d-glucosidase molecule.Biochem. Biophys. Res. Commun.98, 792–799 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem.31, 427–429 (1959).

    Google Scholar 

  • O'Farrell P.Z., Goodman H.M., O'Farrell P.H.: High resolution two-dimensional electrophoresis of basic as well as acidic proteins.Cell12, 1133–1142 (1977).

    Article  PubMed  Google Scholar 

  • Pazur J.H., Liu B., Miskiel F.J.: Comparison of the properties of glucoamylases fromRhizopus niveus andAspergillus niger.Biotechnol. Appl. Biochem.12, 63–78 (1990).

    PubMed  CAS  Google Scholar 

  • Rickwood D.: An introduction to polyacrylamide gel electrophoresis, pp. 14–15 in B.D. Hames, D. Rickwood (Eds):Gel Electrophoresis of Proteins—a practical approach. IRL Press, Oxford-Washington (DC) 1985.

    Google Scholar 

  • Silva W.B., Peralta R.M.: Purification and characterization of a thermostable glucoamylase fromAspergillus fumigatus.Can. J. Microbiol.44, 493–497 (1998).

    Article  Google Scholar 

  • Sivakami S., Radhakrishnan A.N.: Kinetic studies on glucoamylase of rabbit small intestine.Biochem. J.153, 321–327 (1976).

    PubMed  CAS  Google Scholar 

  • Stefanova M.E., Tonkova A.I., Dobreva E.P., Spasova D.I.: Agar gel immobilization ofBacillus brevis cells for production of thermostable α-amylase.Folia Microbiol.43, 42–46 (1998).

    Article  CAS  Google Scholar 

  • Straatsma G., Samson R.A.: Taxonomy ofScytalidium thermophilum, an important thermophilic fungus in mushroom compost.Mycol. Res.97, 321–328 (1993).

    Google Scholar 

  • Thorn M.B.: A method for determining the ratio of the Michaelis constant of an enzyme with respect to two substrate.Nature4157, 27–29 (1946).

    Google Scholar 

  • Tosi L.R.O., Terenzi H.F., Jorge J.A.: Purification and characterization of an extracellular glucoamylase from the thermophilic fungusHumicola grisea var.thermoidea.Can. J. Microbiol.39, 846–852 (1993).

    Article  CAS  Google Scholar 

  • Vihinen M., Mäntsälä P.: Microbial amylolytic enzymes.Crit. Rev. Biochem. Mol. Biol.24, 329–418 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. L. T. M. Polizeli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aquino, A.C.M.M., Jorge, J.A., Terenzi, H.F. et al. Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungusScytalidium thermophilum . Folia Microbiol 46, 11–16 (2001).

Download citation

  • Received:

  • Issue Date:

  • DOI:


  • Starch
  • Maltose
  • Molar Mass
  • Amylose
  • Thermophilic Fungus