Skip to main content
Log in

Determination of food web support and trophic position of the mummichog,Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.

    Article  Google Scholar 

  • Able, K. W. andS. M. Hagan. 2003. The impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50.

    Article  Google Scholar 

  • Able, K. W., S. M. Hagan, andS. A. Brown. 2003. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal.Estuaries 26:484–494.

    Article  Google Scholar 

  • Able, K. W., D. M. Nemerson, R. Bush, andP. Light. 2001. Spatial variation in Delaware Bay (U.S.A.) marsh creek fish assemblages.Estuaries 24:441–452.

    Article  Google Scholar 

  • Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke, andM. D. Newkirk. 1994. Gut contents of common mummichogs,Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes.Estuaries 17:462–471.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Buffan-Dubau, E. andK. R. Carman. 2000. Diel feeding behavior of meiofauna and their relationships with microalgal resources.Limnology and Oceanography 45:381–395.

    Article  CAS  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chanton, J. P. andF. G. Lewis. 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-cominated estuary: Apalachicola Bay, Florida.Estuaries 22:575–583.

    Article  CAS  Google Scholar 

  • Cifuentes, L. A., J. H. Sharp, andM. L. Fogel. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary.Limnology and Oceanography 33:1102–1115.

    CAS  Google Scholar 

  • Creach, V., M. T. Schricke, G. Bertru, andA. Marriotti. 1997. Stable isotopes and gut analyses to determine feeding relationships in salt marsh macroconsumers.Estuarine, Coastal and Shelf Science 44:599–611.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. Y. Newell, andH. W. Paerl. 1995. The role of standing dead and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis.Marine Ecology Progress Series 121:99–116.

    Article  Google Scholar 

  • Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.

    Article  Google Scholar 

  • Des Marais, D. J. andD. E. Canfield. 1994. The carbon isotope biogeochemistry of microbial mats.Microbial Mats 35:289–297.

    Google Scholar 

  • Fell, P. E., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppier, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey resources for the mummichog,Fundulus heteroclitus L.?Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Fogel, M. L., L. A. Cifuentes, D. J. Velinsky, andJ. H. Sharp. 1992. Relationship of carbon availability in estuarine phytoplankton to isotopic composition.Marine Ecology Progress Series 82:291–300.

    Article  CAS  Google Scholar 

  • Fry, B. andE. B. Sherr. 1984. Delta13C measurements as indicators of carbon flow in marine and freshwater ecosystems.Contributions in Marine Science 27:13–47.

    CAS  Google Scholar 

  • Griffin, M. P. A. andI. Valiela. 2001. Delta15N isotope studies of life history and trophic position ofFundulus heteroclitus andMenidia menidia.Marine Ecology Progress 214:299–305.

    Article  Google Scholar 

  • Herman, P. M. J., J. J. Middelburg, J. Widdows, C. H. Lucas, andC. H. R. Heip. 2000. Stable isotopes as trophic tracers: Combining field sampling and manipulative labelling of food resources for macrobenthos.Marine Ecology Progress Series 204:79–92.

    Article  CAS  Google Scholar 

  • Hughes, E. H., L. A. Deegan, B. J. Peterson, R. M. Holmes, andB. Fry. 2000. Nitrogen flow through the food web in the oligohaline zone of a New England estuary.Ecology 81:433–452.

    Article  Google Scholar 

  • Ibanez, C., A. Curco, J. W. Day, Jr., andN. Prat. 2000. Structure and productivity of microtidal Mediterranean coastal marshes, p. 107–136.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Kneib, R. T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States, p. 267–292.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Kneib, R. T., A. E. Stiven, andE. B. Haines. 1980. Stable carbon isotope ratios inFundulus heteroclitus (L.) muscle tissue and gut contents from a North CarolinaSpartina marsh.Journal of Experimental Marine Biology and Ecology 46:89–98.

    Article  CAS  Google Scholar 

  • Kwak, T. J. andJ. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes.Oecologia 110:62–277.

    Article  Google Scholar 

  • Lopez, G. R. andJ. S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments.Quarterly Review of Biology 62:235–259.

    Article  Google Scholar 

  • Lotrich, V. A. 1975. Summer home range and movements ofFundulus heteroclitus in a tidal creek.Ecology 56:191–198.

    Article  Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2000. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.

    Article  Google Scholar 

  • Nemerson, D. M. and K. W. Able. In press. Spatial and temporal patterns in the distribution and food habits ofMorone saxatilis (Walbaum), striped bass, in marsh creeks of Delaware Bay, USA.Fisheries Management and Ecology

  • Peterson, B. J., R. W. Howarth, andR. H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs.Science 227:1361–1363.

    Article  CAS  Google Scholar 

  • Peterson, B. J., R. W. Howarth, andR. H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow.Ecology 67:865–874.

    Article  CAS  Google Scholar 

  • Piehler, M. F., C. A. Currin, R. Cassanova, andH. W. Pearl. 1998. Development and N2-fixing activity of the benthic microbial community in transplantedSpartina alterniflora marshes in North Carolina.Restoration Ecology 6:290–296.

    Article  Google Scholar 

  • Pinckney, J. andR. G. Zingmark. 1993. Biomass and production of benthic microalgal communities in estuarine habitats.Estuaries 16:887–897.

    Article  CAS  Google Scholar 

  • Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions.Ecology 83:703–718.

    Google Scholar 

  • Smith, K. J., G. Taghon, andK. W. Able. 2000. Trophic linkages in marshes: Ontogenetic changes in diet for young-of-the-year mummichog,Fundulus heteroclitus. p. 221–237.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Stribling, J. M. andJ. C. Cornwell. 1997. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur.Estuaries 20:77–85.

    Article  CAS  Google Scholar 

  • Stribling, J. M., J. C. Cornwell, andC. Currin. 1998. Variability of stable sulfur isotopic ratios inSpartina alterniflora.Marine Ecology Progress Series 166:73–81.

    Article  CAS  Google Scholar 

  • Sullivan, M. J. andC. A. Currin. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes, p. 81–106.In M. P. Weinstein and D. A. Kreeger, (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress 62:149–159.

    Article  Google Scholar 

  • Talley, D. M. 2000. Ichthyofaunal utilization of newly-created versus natural salt marsh creeks in Mission Bay, California.Wetlands Ecology and Management 8:117–132.

    Article  Google Scholar 

  • Teo, S. L. H. and K. W. Able. In press. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh.Estuaries

  • Tupper, M. andK. W. Able. 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh.Marine Biology 137:1049–1058.

    Article  Google Scholar 

  • Wainright, S. C., C. M. Fuller, andL. R. McGuiness. 1999. Stable isotope composition of suspended organic matter in the Mullica River/Great Bah estuary (southern New Jersey, U.S.A.),New Jersey Bulletin of Marine Science 44:1–11.

    Google Scholar 

  • Wainright, S. C., C. M. Fuller, R. M. Michener, andR. A. Richards. 1996. Spatial variations of growth rate and trophic position of juvenile striped bass (Morone saxatilis) in the Delaware River.Canadian Journal of Fisheries and Aquatic Science 53:685–692.

    Article  Google Scholar 

  • Wainright, S. C., M. W. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrassSpartina alterniflora and the common reedPhragmites australis to brackishmarsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.

    Article  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  • Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and adaptive management for a largescale wetland restoration project.Wetlands Ecology and Management 4:111–127.

    Article  Google Scholar 

  • Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.

    Article  Google Scholar 

  • Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Windham, L. A. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

Source of Unpublished Materials

  • Able, K. W. personal communication. Marine Field Station, Institute of Marine and Coastal Sciences, Rutgers University, 800 Great Bay Boulevard, Tuckerton, New Jersey 08087.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Currin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currin, C.A., Wainright, S.C., Able, K.W. et al. Determination of food web support and trophic position of the mummichog,Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries 26, 495–510 (2003). https://doi.org/10.1007/BF02823726

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823726

Keywords

Navigation