Skip to main content
Log in

The lateral separation of contacts on erythrocytes agglutinated by polylysine

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The form of contact seam (whether a continuous parallel seam or membranes in spatially periodic contact) has been characterized for normal and for neuraminidase pretreated human erythrocytes following adhesion in solutions of polylysine in the molecular mass range 10–225 kDa at concentrations from 0.5 to 1.0 mg/mL. The adhesion contact seam was spatially periodic for all normal control cells in polylysine. The lateral separation of contacts decreased from 1.6 to 0.8 μm as the concentration of 225 kDa polylysine was increased threefold from the adhesion threshold value. The separation distance did not change further even at high polymer concentrations that increased the electrophoretic velocity to positive values over twice the modulus of the velocity of control cells. The probability of cell adhesion decreased at these high polymer concentrations. The lateral contact separation increased and cell adhesion decreased for cells pretreated with neuraminidase. Cell adhesion did not occur when neuraminidase reduced the cell electrophoretic velocity modulus by 30%. Following neuraminidase pretreatments that allowed a small amount of adhesion, the cell contact seam was continuous rather than spatially peridic. The results show that a procedure that increases (e.g., polymer concentration increase) or decreases (e.g., enzyme removal of polycation crosslinking site) attraction leads to shorter (to a limiting value) or longer lateral contact separation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katchalsky, A., Danon, D., Nevo, A., and de Vries, A. (1959)Biochim. Biophys. Acta 33, 120–138.

    Article  PubMed  CAS  Google Scholar 

  2. Marikovsky, Y., Danon, D., and Katchalsky, A. (1966)Biochim. Biophys. Acta 124, 154–159.

    PubMed  CAS  Google Scholar 

  3. Coakley, W. T., Hewison, L. A., and Tilley, D. (1985)Eur. Biophys. J. 13, 123–130.

    Article  PubMed  CAS  Google Scholar 

  4. Hewison, L. A. (1988).Spatial Periodicity of Cell-Cell Contact: An Interfacial Instability Approach. Ph.D. Thesis, University of Wales, UK.

    Google Scholar 

  5. Hewison, L. A., Coakley, W. T., and Meyer, H. W. (1988)Cell Biophys. 13, 151–157.

    PubMed  CAS  Google Scholar 

  6. Danon, D., Howe, C., and Lee, L. T. (1965)Biochim. Biophys. Acta 101, 201–213.

    CAS  Google Scholar 

  7. Darmani, H. and Coakley, W. T. (1990)Biochim Biophys. Acta 1021, 182–190.

    Article  PubMed  CAS  Google Scholar 

  8. Baker, A. J., Coakley, W. T., and Gallez, D. (1993)Eur. Biophys. J. 22, 53–62.

    Article  PubMed  CAS  Google Scholar 

  9. Dimitrov, D. S. and Jain, R. K. (1984)Biochim. Biophys. Acta 779, 437–468.

    PubMed  CAS  Google Scholar 

  10. Gallez, D. and Coakley, W. T. (1986)Prog. Biophys. Mol. Biol. 48, 155–199.

    Article  PubMed  CAS  Google Scholar 

  11. Coakley, W. T. and Gallez, D. (1989)Biosci. Rep. 9, 675–691.

    Article  PubMed  CAS  Google Scholar 

  12. Sutherland, W. H. and Pritchard, J. A. V. (1979) inCell Electrophoresis: Clinical Applications and Methodology, Preece, A. W. and Sabolovic, D., eds., Elsevier/North Holland, Amsterdam, pp. 421–430.

    Google Scholar 

  13. Marra, J. and Hair, M. L. (1988)J. Phys. Chem. 92, 6044–6051.

    Article  CAS  Google Scholar 

  14. Darmani, H., Coakley, W. T., Hann, A. C., and Brain, A. (1990)Cell Biophys. 16, 105–126.

    PubMed  CAS  Google Scholar 

  15. Darmani, H. and Coakley, W. T. (1991)Cell Biophys. 18, 1–13.

    PubMed  CAS  Google Scholar 

  16. Ginsburg, I., Mor, N., Resnick, M., and Bercovier, H. (1986)Eur. J. Cell Biol. 41, 130–133.

    Google Scholar 

  17. Nagura, H., Asai J., Katsumata, Y., and Kojima, K. (1973)Acta Path. Jap. 23, 279–290.

    PubMed  CAS  Google Scholar 

  18. Preston, T. M. and King, C. A. (1978)J. Cell Sci. 34, 145–158.

    PubMed  CAS  Google Scholar 

  19. King, C. A., Cooper, L., and Preston, T. M. (1983)Protoplasma 118, 10–18.

    Article  Google Scholar 

  20. Dimitrov, D. S. (1982)Colloid Polymer Sci. 260, 1137–1144.

    Article  CAS  Google Scholar 

  21. Gallez, D., Prevost, M., and Sanfeld, A. (1984)Colloids Surf. 10, 123–131.

    Article  CAS  Google Scholar 

  22. Akay, G. (1982)Polymer Eng. Sci. 22, 798–804.

    Article  CAS  Google Scholar 

  23. Lefebvre, D. R., Dillard, D. A., and Ward, T. C. (1989)J. Adhesion 27, 1–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N.E., Coakley, W.T. & Akay, G. The lateral separation of contacts on erythrocytes agglutinated by polylysine. Cell Biophysics 20, 125–147 (1992). https://doi.org/10.1007/BF02823654

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823654

Index Entries

Navigation