Skip to main content
Log in

Soluble carbohydrate content of soybean [Glycine max (L.) merr.] somatic and zygotic embryos during development

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Somatic and zygotic embryos of soybean cv. Jack were analyzed for soluble carbohydrate, total lipids, and protein during development. Zygotic embryos accumulated trace amounts of fructose, galactose, and galactinol., whereas somatic embryos contained only trace amounts of galactose. Somatic embryos accumulated much higher glucose levels than zygotic embryos. Both somatic and zygotic embryos contain low levels of sucrose, myoinositol, and pinitol. Raffinose and stachyose accumulated in the late developmental stages of zygotic embryos, but only stachyose was found to accumulate in the late stage somatic embryos. Zygotic embryos contained low total lipid levels up to 50 d after flowering (DAF) and then the levels increased to 16% by 55 DAF and 21% at 65 DAF. Somatic embryos had low levels of total lipids throughout development with the maximum of only 4.7%. Soybean zygotic embryos contained about 40% protein throughout development, while the protein concentration of somatic embryos decreased from 44% to 25% as maturation approached. These studies demonstrate that the composition of Jack zygotic embryos is similar to that described for other cultivars during development while the somatic embryo composition and size is markedly different. The low somatic embryo germination often noted might be due to the abnormal development as shown by a composition different from that of mature zygotic embryos. The low concentration of the raffinose series sugars might be especially important factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amuti, F. S.; Pollard, C. J.. Soluble carbohydrates of dry and developing seeds. Phytochemistry 16:529–532; 1977.

    Article  CAS  Google Scholar 

  • Bils, R. F.; Howell, R. W.. Biochemical and cytological changes in developing soybean cotyledons. Crop Sci. 3:304–308; 1963.

    Article  CAS  Google Scholar 

  • Blackman, S. A.; Obendorf, R. L.; Leopold, A. C.. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 100:225–230; 1992.

    PubMed  CAS  Google Scholar 

  • Buchheim, J. A.; Colburn, S. M.; Ranch, J. P.. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768–775; 1989.

    PubMed  CAS  Google Scholar 

  • Chanprame, S., Widholm, J. M.. Comparison of oil, protein and sugars content in soybean (Glycine max) cv. Jack somatic and zygotic embryos. In Vitro Cell. Dev. Biol. Plant 32(3):90A 1996a.

    Google Scholar 

  • Chanprame, S., Widholm, J. M. Comparison of oil, protein and sugars content of soybean (Glycine max [L] Merr.) somatic and zygotic embryos. 6th Biennial Conference of Molecular and Cellular Biology of the Soybean; Columbia, MO: 3P;1996b.

  • Dahmer, M. L.; Collins, G. B.; Hildebrand, D. F., Lipid content and composition of soybean somatic embryos. Crop. Sci. 31:741–746; 1991.

    Article  CAS  Google Scholar 

  • Dahmer, M. L.; Collins, G. B.; Hildebrand, D. F.. Lipid content and composition of soybean somatic embryos. Crop. Sci. 31:741–746; 1991.

    Article  CAS  Google Scholar 

  • Dahmer, M. L.; Hildebrand, D. F.; Collins, G. B., Comparative protein accumulation patterns in soybean somatic andzygotic embryos. In Vitro Cell. Dev. Biol. 28P:106–114; 1992.

    CAS  Google Scholar 

  • East, J. W.; Nakayama, T. O. M.; Parkman, S. B. Changes in stachyose raffinose, sucrose and monosaccharides during germination of soybean. Crop Sci 12:7–9; 1972.

    Article  CAS  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P:175–182; 1991.

    CAS  Google Scholar 

  • Finer, J. J.; Nagasawa, A. Development of an embryogenic suspension culture of soybean. Plant Cell Tissue Organ Cult. 15:125–136; 1988.

    Article  CAS  Google Scholar 

  • Finer, J. J.; Vain, P.; Jones, M. W., et al. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11:323–328; 1992.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:150–158; 1968.

    Article  Google Scholar 

  • Gascon, S.; Lampen, J. O. Purification of the internal invertase of yeast. J. Biol. Chem. 243:1567–1572; 1968.

    PubMed  CAS  Google Scholar 

  • Hartweck, L. M.; Lazzeri, P. A.; Cui, D. et al. Auxin-orientation effects on somatie embryogenesis from immature soybean cotyledons. In Vitro Cell. Dev. Biol. 24:821–828; 1988.

    Article  CAS  Google Scholar 

  • Hill, J. E.; Breidenbach, R. W. Proteins of soybean seeds. I. Isolation and characterization of major components. Plant Physiol. 53:742–746; 1974a.

    PubMed  CAS  Google Scholar 

  • Hill, J. E.; Breidenbach, R. W. Proteins of soybean seeds II. Accumulation of the major protein components during seed development and maturation. Plant Physiol. 53:747–751; 1974b.

    PubMed  CAS  Google Scholar 

  • Horbowicz, M.; Obendorf, R. L.; McKersie B. D., et al. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets and mature seeds. Plant Sci. 109:191–198; 1995.

    Article  CAS  Google Scholar 

  • Hymowitz, T.; Collins, F. I.; Panczner, J., et al. Relationship between the content of oil, protein and sugar in soybean seeds. Agron. J. 64:613–616; 1972a.

    Article  CAS  Google Scholar 

  • Hymowitz, T.; Walker, W. M.; Collins, F. I., et al. Stability of sugar content in soybean strains. Commun. Soil Sci. Plant Anal. 3:367–373; 1972b.

    Article  CAS  Google Scholar 

  • Komatsuda, T.; Wenbin, L.; Seibi, O. Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeanGlycine gracilis Skvortz andGlycine max [L.] Merr. Plant Cell Tissue Organ Cult. 28:103–113; 1992.

    Article  CAS  Google Scholar 

  • Krochko, J. E.; Bantroch, D. J.; Greenwood, J. S., et al. Seed storage proteins in developing somatic embryos of alfalfa: defects in accumulation compared to zygotic embryos. J. exp. Bot. 45:699–708; 1994.

    Article  CAS  Google Scholar 

  • Krochko, J. E.; Pramanik, S. K.; Bewley, J. D. Contrasting storage protein synthesis and messenger RNA accumulation during development of zygotic and somatic embryos of alfalfa (Medicago sativa L.). Plant Physiol. 99:46–53; 1992.

    PubMed  CAS  Google Scholar 

  • Kuo, T. M.; Lowell, C. A.; Nelsen, T. C. Occurrence of pinitol in developing soybean seed tissues. Phytochemistry 45:29–35; 1997a.

    Article  CAS  Google Scholar 

  • Kuo, T. M.; Lowell, C. A.; Smith, P. T. Changes in soluble carbohydrates and enzymic activities in maturing soybean seed tissues. Plant Sci. 125:1–11; 1997b.

    Article  CAS  Google Scholar 

  • Kuo, T. M.; Van Middlesworth, J. F.; Wolf, W. J. Content of raffinose oligosaccharides and sucrose in various plant seeds. J. Agric. Food Chem. 36:32–36; 1988.

    Article  CAS  Google Scholar 

  • Lowell, C. A.; Kuo, T. M. Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Sci. 29:459–465; 1989.

    Article  CAS  Google Scholar 

  • Mhaske, V. B.; Hazra, S. Appearance of storage lipid (triglycerides) in somatic embryos of peanut (Arachis hypogea L.). In Vitro Cell. Dev. Biol. 24(8):829–832; 1994.

    Google Scholar 

  • Murashige, T; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Parrott, W. A.; Hoffman, L. M.; Hildebrand, D. F., et al. Recovery of primary transformants of soybean. Plant Cell Rep. 7:615–617: 1989.

    CAS  Google Scholar 

  • Pence, V. C.; Hasegawa, P. M.; Janick, J. Sucrose-mediated regulation of fatty acid composition in asexual embryos ofThoebroma cacao. Physiol. Plant. 53:378–384; 1981.

    Article  CAS  Google Scholar 

  • Perez-Grau, L.; Goldberg, R. B. Soybean seed proteins are regulated spatially during embryogenesis. Plant Cell. 1:1095–1109; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, A.; Rinne, R. W.; Canvin, P. T., Protein, oil and fatty acid in developing soybean seeds. Crop Sci. 12:739–741; 1972.

    Article  CAS  Google Scholar 

  • Sato, S.; Newell, C.; Kolacz, K., et al. Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep. 12:408–413; 1993.

    CAS  Google Scholar 

  • Shoemaker, R. C.; Hammond, E. G. Fatty acid composition of soybean (Glycine max [L.] Merr.) somatic embryos. In Vitro Cell. Dev. Biol. 24(8):829–832; 1988.

    Article  CAS  Google Scholar 

  • Slawinska, J.; Obendorf, R. L. Soybean somatic embryo maturation: composition, respiration and water relations. Seed Sci. Res. 1:251–262; 1991.

    CAS  Google Scholar 

  • Stejskal, J.; Griga, M. Comparative analysis of some isozyme and proteins in somatic and zygotic embryos of soybean (Glycine max [L.] Merr.) J. Plant Physiol. 146:497–502; 1995.

    CAS  Google Scholar 

  • Tada, M.; Kawamura, S. Changes of soybean carbohydrates during growth and germination. J. Tech. Bull. Fac. Agric. Kagawa University; 14:148–155; 1963.

    CAS  Google Scholar 

  • Yazdi-Samadi, B.; Rinne, R. W.; Seif, R. D. Components of developing soybean seeds: oil, protein, sugars, organic acids and amino acids. Agron. J. 69:481–486; 1977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanprame, S., Kuo, T.M. & Widholm, J.M. Soluble carbohydrate content of soybean [Glycine max (L.) merr.] somatic and zygotic embryos during development. In Vitro Cell.Dev.Biol.-Plant 34, 64–68 (1998). https://doi.org/10.1007/BF02823125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823125

Key words

Navigation