Skip to main content
Log in

Genetic transformation mediated byAgrobacterium tumefaciens of florists' chrysanthemum (Dendranthema xgrandiflorum) cultivar ‘Peach Margaret’

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A genetic transformation method usingAgrobacterium tumefaciens strain LBA4404 and based on the neomycin phosphotransferase II (nptII) selectable marker gene is described for a cultivar of florists' chrysanthemum,Dendranthema Xgrandiflorum ‘Peach Margaret’. We used the flavonoid regulatory cDNA,Leaf color (Lc) from the monocotZea mays (maize), under control of the cauliflower mosaic virus 35S promoter, to test if it would serve as a visible, nondestructive pigmentation reporter of transformation in chrysanthemum and to see if we could modify floral and leaf pigmentation. Stable integration of the maizeLc cDNA in ‘Peach Margaret’ was confirmed by Southern DNA analysis. However, noLc RNA transcripts were detected and no increase in pigmentation was observed in the transformants. In contrast, activity of thenptII transgene in the transformants was confirmed by production of roots in the presence of 20 mg/l kanamycin and challenging leaf explants to regenerate shoots in the presence of 25 mg/l kanamycin. This is the first reported method based onAgrobacterium tumefaciens for genetic transformation of cultivar ‘Peach Margaret’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G.; Ebert, P. R.; Mitra, A., et al. Binary vectors. In: Gelvin, S. B.; Schilperoort, R. A., eds. Plant molecular biology manual A3. Dordrecht, Netherlands: Kluwer Academic Publishers; 1988:1–19.

    Google Scholar 

  • Anderson, N. O. Reclassification of the genusChrysanthemum. Hort. Science 22:313; 1987.

    Google Scholar 

  • Boase, M. R.; Miller, R.; Deroles, S. C. Chrysanthemum systematics, genetics, and breeding. Plant Breed. Rev. 14:321–361; 1997.

    Google Scholar 

  • Bowen, B. A. Anthocyanin genes as visible markers in transformed maize tissues. In: Gallagher, S., ed. GUS protocols: using the GUS gene as a reporter of gene expression. San Diego, CA: Academic Press; 1992:163–177.

    Google Scholar 

  • Bowen, B. A. Markers for plant gene transfer. In: Kung, S. D.; Wu, R., eds. Transgenic plants. Vol. 1. Engineering and utilization. San Diego, CA: Academic Press; 1993:89–123.

    Google Scholar 

  • Bradley, J. M.; Davies, K. M.; Deroles, S. C., et al. The maizeLc regulatory gene upregulates the flavonoid biosynthetic pathway ofPetunia. The Plant Journal; in press: 1997.

  • Bremer, K.; Humphries, C. J. Generic monograph of the Asteraceae—Anthemideae. Bull. Nat. Hist. Mus. Lond. (Bot.) 23:71–177; 1993.

    Google Scholar 

  • Church, G. M.; Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K. M.; Schwinn, K. E. Flower colour. In: Geneve, R. L.; Preece, J. E.; Merkle, S. A., eds. Biotechnology of ornamental plants. Wallingford, UK: CAB International; 1997:259–294.

    Google Scholar 

  • De Jong, J.; Rademaker, W.; Ohishi, K. Agrobacterium transformation of Chrysanthenum. Plant Tissue Culture and Biotechnology 1:38–42; 1995.

    Google Scholar 

  • Draper, J.; Scott, R.; Hamill, J. Transformation of dicotyledonous plant cells using the Ti plasmid ofAgrobacterium tumefaciens and Ri plasmid ofA. rhizogenes. In: Draper, J.; Scott, H.; Armitage, P., et al., eds. Plant genetic transformation and gene expression: a laboratory manual. Oxford, England: Blackwell Scientific Publishers; 1988:69–160.

    Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50:148–151; 1968.

    Article  Google Scholar 

  • Genstat 5 Committee. Genstat TM 5 release 3 reference manual. Oxford, England: 0134 0251 V Clarendon Press; 1993. 0134 02

  • Goldbrough, A. P.; Tong, Y.; Yoder, J. I. Lc as a non-destructive visual reporter and transposition marker gene for tomato. The Plant Journal. 9(6):927–933; 1996.

    Article  Google Scholar 

  • Herman, E. B., ed. Maintaining explants in contact with solid medium. Agricell Report 24:13; 1995.

  • Hoekema, A.; Hirsch, P. R.; Hooykaas, P. J. J., et al. A binary vector strategy based on the separation of thevir and T-DNA regions of theAgrobacterium tumefactiens Ti-plasmid. Nature 303:179–181; 1983.

    Article  CAS  Google Scholar 

  • Hooykaas, P. J. J.; Mozo, T. Agrobacterium molecular genetics. Plant Molecular Biology Manual B3:1–9; 1994.

    Google Scholar 

  • King, G. A.; Davies, K. M. Identification, cDNA cloning and analysis of mRNAs having altered expression in tips of harvested Asparagus spears. Plant Physiol. 100:1161–1169; 1992.

    Article  Google Scholar 

  • Lloyd, A. M.; Walbot, V.; Davis, R. W.Arabidopsis andNicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, S. R.; Bowen, B.; Beach, L., et al. A regulatory gene as a novel visible marker for maize transformation. Science 247:449–450; 1990.

    Article  PubMed  Google Scholar 

  • Ludwig, S. R.; Habera, L. F.; Dellaporta, S. L., et al.Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains themyc-homology region. Proc. Natl. Acad. Sci. USA 86:7092–7096; 1989.

    Article  PubMed  CAS  Google Scholar 

  • McHughen, A.; Jordan, M. C. Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep. 7:285–287; 1988.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Prescott, A.; Martin, C. Rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol. Biol. Rep. 4:219–224; 1987.

    CAS  Google Scholar 

  • Quattrocchio, F.; Wing, J. F.; Leppen, H. T. C., et al. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ronald, W. G.; Ascher, P. D. Self compatibility in garden chrysanthemum: occurrence, inheritance and breeding potential. Theor. Appl. Genet. 46:45–54; 1975.

    Article  Google Scholar 

  • Schwinn, K. E.; Markham, K. R.; Given, N. K. Floral flavonoids and potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars. Phytochemistry 35:145–150; 1994.

    Article  CAS  Google Scholar 

  • Soreng, R. J.; Cope, F. A. On the taxonomy of cultivated species of the chrysanthemum genes complex (Anthemideae; Compositae). Baileya 23:145–165; 1991.

    Google Scholar 

  • Stewart, R. N.; Derman, H. Somatic genetic analysis of the apical layers of chimeral sports in chrysanthemum by experimental production of adventitious shoots. Am. J. Bot. 57:1061–1071; 1970.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boase, M.R., Bradley, J.M. & Borst, N.K. Genetic transformation mediated byAgrobacterium tumefaciens of florists' chrysanthemum (Dendranthema xgrandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell.Dev.Biol.-Plant 34, 46–51 (1998). https://doi.org/10.1007/BF02823122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823122

Key words

Navigation