Skip to main content
Log in

Extracellular enzymes ofErwinia carotovora eliminate the need for azacytidine treatment for high frequency transformation ofArabidopsis thaliana

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This paper reports a part of our studies on large-scale T-DNA-mediated gene tagging inArabidopsis thaliana. To enhance the chance of tagging specific stress-responsive genes of this species by monitoring the preferential insertion of the T-DNA into the actively transcribed loci, we exposed the root explants to low temperature (LT), abscisic acid (ABA), and extracellular enzymes (EXE) of the plant pathogenErwinia carotovora prior to transformation byAgrobacterium tumefaciens. Both LT and ABA reduced the frequency of transformation; with these treatments, the average transformation frequencies were 8.1% and 2.6%, respectively. However, in explants pretreated with EXE the transformation frequency was 89.0%, similar to that obtained in control materials (92.6%). Transgenic calli developed from these explants did not require any treatment with azacytidine (azaC) for efficient shoot regeneration. Furthermore, this treatment enhanced multiple insertion of the T-DNA into the plant genome; within a population of EXE-treated transgenic plants, the number of lines harboring at least three copies of the integrated T-DNA was much higher (61%) than that observed in an untreated population (34%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Deblaere, R.; Bytebier, B.; De Greve, H., et al. Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13:4777–4788; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Errampalli, D.; Patton, D.; Castle, L., et al. Embryonic lethal and T-DNA insertional mutagenesis inArabidopsis. Plant Cell 3:149–157; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, K. A. T-DNA insertion mutagenesis inArabidopsis: mutational spectrum. The Plant J. 1:71–82; 1991.

    Article  CAS  Google Scholar 

  • Feldmann, K. A.; Marks, M. D.; Christianson, M. L., et al. A dwarf mutant ofArabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fobert, P. R.; Miki, B. L.; Lyer, V. N. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol. Biol. 17:837–851; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S. J.; Artus, N. N.; Thomashow, M. F. cDNA sequence analysis and expression of two cold-regulated genes ofArabidopsis thaliana. Plant Mol. Biol. 18:13–21; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Goldsborough, A.; Bevan, M. New patterns of gene activity in plants detected using anAgrobacterium vector. Plant Mol. Biol. 16:263–269; 1991.

    Article  Google Scholar 

  • Hayashi, H.; Czaja, I.; Lubenow, H., et al. Activation of a plant gene by T-DNA tagging: auxin-independent growthin vitro. Science 258:1350–1353; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Heikinheimo, R.; Flego, D.; Pirhonen, M., et al. Characterization of a novel pectate lyase fromErwinia carotovora subsp.carotovora. Mol. Plant-Microbe Interact. 8(2):207–217; 1995.

    PubMed  CAS  Google Scholar 

  • Herman, P. L.; Marks, M. D. Trichome development inArabidopsis thaliana II. Isolation and complementation of theglabrous 1 gene. Plant Cell 1:1051–1055; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hewelt, A.; Prinsen, E.; Schell, J., et al. Promoter tagging with a promoterlessipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. The Plant J. 6(6):879–891; 1994.

    Article  CAS  Google Scholar 

  • Kertbundit, S.; De Greve, H.; Deboeck, F., et al.In vivo random β-glucuronidase gene fusions inArabidopsis thaliana. Proc. Natl. Acad. Sci. USA 88:5212–5216; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C.; Martini, N.; Meyerhofer, R., et al. High-frequency T-DNA-mediated gene fusions inArabidopsis thaliana. Proc. Natl. Acad. Sci. USA 86:8467–8471; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C.; Nemeth, K.; Redei, G. P., et al. T-DNA insertional mutagenesis inArabidopsis. Plant Mol. Biol. 20:963–976; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Lång, V.; Palva, E. T. The expression ofrab-related gene,rab18, is induced by abscisic acid during cold acclimation process ofArabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20:951–962; 1992.

    Article  PubMed  Google Scholar 

  • Mandal, A.; Holmström, K.-O.; Sandman, G., et al. Identification of low temperature-induced genes ofArabidopsis thaliana by T-DNA tagging andin vivo gene fusion. In: Dörfling, et al., eds. Crop adaptation to cool climates. EC COST Res. 814:289–296; 1994.

    Google Scholar 

  • Mandal, A.; Lång, V.; Orczyk, W., et al. Improved efficiency for T-DNA-mediated transformation and plasmid rescue inArabidopsis thaliana. Theor. Appl. Genet. 86:621–628; 1993.

    Article  CAS  Google Scholar 

  • Mandal, A.; Sandgren, M.; Holmström, K.-O., et al. Identification ofArabidopsis thaliana sequences responsive to low temperature and abscisic acid by T-DNA tagging andin vivo gene fusion. Plant Mol. Biol. Rep. 13:234–254; 1995.

    Article  Google Scholar 

  • Mandal, A.; Sandgren, M.; Palva, E. T. Inhibition of cytosine methylation allows efficient cloning of T-DNA tagged plant DNA ofArabidopsis thaliana by plasmid rescue. In Vitro Cell. Dev. Biol. 30P:204–209; 1994.

    CAS  Google Scholar 

  • Marks, M. D.; Feldmann, K. A. Trichome development inArabidopsis thaliana I. T-DNA tagging of theglabrous1 gene. Plant Cell 1:1043–1050; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E. M.Arabidopsis thaliana. Annu. Rev. Genet. 21:93–111; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E. M.Arabidopsis, a useful weed. Cell 56:263–269; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. M. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nordin, K.; Heino, P.; Palva, E. T. Separate signal pathways regulate the expression of a low-temperature-induced gene inArabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21:641–653; 1991.

    Article  Google Scholar 

  • Nordin, K.; Vahala, T.; Palva, E. T. Differential expression of two related, low-temperature-induced genes inArabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21:641–653; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Palva, T. K.; Holmström, K.-O.; Heino, P., et al. Induction of plant defense response by exoenzymes ofErwinia carotovora subsp.carotovora. Mol. Plant-Microbe Interact. 2:190–196; 1993.

    Google Scholar 

  • Palva, T. K.; Hurtig, M.; Saindrenan, P., et al. Salicylic acid induced resistance toErwinia carotovora subsp.carotovora in tobacco. Mol. Plant-Microbe Interact. 3:356–363; 1994.

    Google Scholar 

  • Pirhonen, M.; Saarilahti, H.; Karlsson, M.-B., et al. Identification of pathogenicity determinant ofErwinia carotovora subsp.carotovora. by transposon mutagenesis. Mol. Plant-Microbe Interact. 4:276–283; 1991.

    CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2nd ed.; 1989.

    Google Scholar 

  • Southern, E. Detection of specific DNA sequences among fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Topping, J. F.; Agyeman, F.; Henricot, B., et al. Identification of molecular markers of embryogenesis inArabidopsis thaliana by promotor trapping. The Plant J. 5(6):895–903; 1994.

    Article  CAS  Google Scholar 

  • Topping, J. F.; Wei, W.; Lindsey, K. Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019; 1991.

    PubMed  CAS  Google Scholar 

  • Van Lijsebettens, M.; Vanderhaeghen, R.; De Block, M., et al. An S18 ribosomal protein gene copy at theArabidopsis PFL locus affects plant development by its specific expression in meristem. EMBO J. 13:3378–3388; 1994.

    PubMed  Google Scholar 

  • Van Lijsebettens, M.; Vanderhaeghen, R.; Van Montagu, M. Insertional mutagenesis inArabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor. Appl. Genet. 81:277–284; 1991.

    Article  Google Scholar 

  • Walden, R.; Hayashi, H.; Schell, J. T-DNA as a gene tag. The Plant J. 1(3):281–288; 1991.

    Google Scholar 

  • Welin, B. V.; Olson, Å.; Nylander, M., et al. Characterization and differential expression ofdhn/lea/rab-like genes during cold acclimation and drought stress inArabidopsis thaliana. Plant. Mol. Biol. 26:131–144; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M. F.; Ma, H.; Bowman, J. L., et al. The protein encoded by theArabidopsis homeotic geneagamous resembles transcription factors. Nature 346:35–39; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaksson, J., Karim, S. & Mandal, A. Extracellular enzymes ofErwinia carotovora eliminate the need for azacytidine treatment for high frequency transformation ofArabidopsis thaliana . In Vitro Cell.Dev.Biol.-Plant 34, 41–45 (1998). https://doi.org/10.1007/BF02823121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823121

Key words

Navigation