Skip to main content
Log in

Transport ofl-tryptophan inSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In addition to the general amino acid transport system (GAP) ofS. cerevisiae l-tryptophan is transported by another system with approximately 25% capacity of GAP, with aK T of 0.41±0.08 mmol/L and with a similar specificity as GAP (lower inhibition by Met, Pro, Ser, Thr and 2-aminoisobutyric acid; greater inhibition by Glu and His). The pH optimum of this system is at 5.0–5.5, activation energy above the transition point (20°C) was 20 kJ/mol, below the transition point 55 kJ/mol. The transport by this system was virtually unidirectional, efflux amounting to at most 10% into a tryptophan-free medium. The transport itself was blocked by 2,4-dinitrophenol, antimycin A and uranyl nitrate. The system was synthesized de novo during preincubation with glucose=fructose>trehalose >ethanol within 30 min, and was degraded with a half-time of 15 min in the absence of further synthesis. The accumulation ratios ofl-tryptophan ingap1 mutants were concentration-dependent (200∶1 at 1 μmoll-Trp/L, 4∶1 at 2.5 mmoll-Trp/L) and decreased with increasing suspension density from 200∶1 to 5∶1 (for 10 μmoll-Trp/L). The involvement of hydrogen ions in the uptake was clearly demonstrated by the effect of D2O even if it could not be established by either shifts of pHout or membrane depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crabeel M., Grenson M.: Regulation of histidine uptake by specific feedback inhibition of two histidine permeases inSaccharomyces cerevisiae.Eur. J. Biochem. 14, 197–204 (1970).

    Article  PubMed  CAS  Google Scholar 

  • García J.C., Kotyk A.: Effect of ethanol on the specific transport system forl-lysine inSaccharomyces cerevisiae.Folia Microbiol. 33, 281–284 (1988a).

    Google Scholar 

  • García J.C., Kotyk A.: Uptake ofl-lysine by a double mutant ofSaccharomyces cerevisiae.Folia Microbiol. 33, 285–291 (1988b).

    Google Scholar 

  • Grenson M., Hou C., Crabeel M.: Multiplicity of the amino acid permeases inSaccharomyces cerevisiae. IV. Evidence for a general amino acid permease.J. Bacteriol. 103, 770–777 (1970).

    PubMed  CAS  Google Scholar 

  • Halvorson H.O., Cohen G.N.: Incorporation des aminoacides endogènes et exogènes dans les protéines de la levure.Ann. Inst. Pasteur 95, 83–87 (1958).

    Google Scholar 

  • Hauer R., Höfer M.: Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides).J. Membr. Biol. 43, 335–349 (1978).

    Article  CAS  Google Scholar 

  • Horák J.: Amino acid transport in eucaryotic microorganisms.Biochim. Biophys. Acta 864, 223–256 (1987).

    Google Scholar 

  • Horák J., Kotyk A., Říhová L.: Specificity oftrans-inhibition of amino acid transport in baker's yeast.Folia Microbiol. 22, 360–362 (1977).

    Google Scholar 

  • Kotyk A., Říhová L.: Transport of α-aminoisobutyric acid inSaccharomyces cerevisiae. Feedback control.Biochim. Biophys. Acta 288, 380–389 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A., Stružinský R.: Effect of high substrate concentrations on active transport parameters.Biochim. Biophys. Acta 470, 484–491 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A., Michaljaničová D.: Suspension density and accumulation ratio of sugars and amino acids in yeasts.Folia Microbiol. 32, 459–464 (1987).

    Article  CAS  Google Scholar 

  • Kotyk A., Horák J., Knotková A.: Transport protein synthesis in nongrowing yeast cells.Biochim. Biophys. Acta 698, 243–251 (1982).

    PubMed  CAS  Google Scholar 

  • Kotyk A., Dvořáková M., Koryta J.: Deuterons cannot replace protons in active transport processes in yeast.FEBS Lett. 264, 203–205 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Opekarová M., Kotyk A., Horák J., Kholodenko V. P.: Isolation and properties of an arginine-binding protein fromSaccharomyces cerevisiae Eur. J. Biochem. 59, 373–376 (1975).

    Article  PubMed  Google Scholar 

  • Slavík J.: Intracellular pH of yeast cells measured with fluorescent probes.FEBS Lett. 140, 22–26 (1982).

    Article  PubMed  Google Scholar 

  • Taylor E. S.: The assimilation of amino acids by bacteria. III. Concentration of free amino acids in the internals environment of various bacteria and yeasts.J. Gen. Microbiol. 1, 86–90 (1947).

    CAS  Google Scholar 

  • Theuvenet A.P.R., Borst-Pauwels G.W.F.H.: The influence of surface charge on the kinetics of ion translocation across biological membranes.J. Theor. Biol. 57, 313–329 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotyk, A., Dvořáková, M. Transport ofl-tryptophan inSaccharomyces cerevisiae . Folia Microbiol 35, 209–217 (1990). https://doi.org/10.1007/BF02820487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820487

Keywords

Navigation