Skip to main content
Log in

High-velocity range and energy-loss measurements in Al, Cu, Pb, U and emulsion

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Measurements were made of relative stopping powers of several materials in the proton energy intervals (750÷600) MeV, (600÷450) MeV, (450÷300) MeV and (750÷0) MeV. By collimation and magnetic analysis a «pencil beam» free of degraded particles was extracted from the 184 in. cyclotron. Using this beam in «good geometry» the stopping powers of Al, Pb, U and emulsion were measured relative to Cu. The total ranges yield the most accurate estimates of the mean excitation potentials. It is assumed that the mean excitation potential of Al is 163 eV, and that at 750 MeV substantially all the tight binding corrections required are those for theK andL shells. The mean excitation potentials in eV found with these assumptions are: copper, 323; lead, 826; uranium, 917; and emulsion, 328. The results from the differential stopping-power measurements are in general accord with these data. However, the agreement of the differential measurements with the theoretical ratios could be improved by raising the above mean excitation potentials of Al and Pb or by lowering those of copper, uranium and emulsion. This experiment confirms the general shape of theI/Z vs Z curve found by Bakker and Segrè, and when similarly normalized, is in reasonable absolute agreement. The status of the emulsion range-energy table is reviewed in the light of these and other relevant measurements. Incidental observations were made on the scattering, straggling and attenuation behavior of a highly collimated monoenergetic beam of protons which was brought to rest in a large block of copper.

Riassunto

Abbiamo eseguito la misura del potere relativo d’arresto di alcuni materiali entro gli intervalli di energia dei protoni (750÷600) MeV, (600÷450) MeV, (450÷300) MeV e (750÷0) MeV. Mediante collimazione ed analisi magnetica, abbiamo estratto dal ciclotrone di 184 in. un «pennello» privo di particelle degradate. Usando questo fascio in «buona geometria», abbiamo misurato il potere d’arresto dell’Al, del Pb, dell’U e dell’emulsione, relativamente al Cu. I percorsi totali forniscono le stime più accurate dei potenziali medi di eccitazione. Si suppone che il potenziale medio di eccitazione dell’Al sia 163 eV, e che a 750 MeV tutte le richieste correzioni di legame stretto siano sostanzialmente quelle per gli stratiK edL. I potenziali medi di eccitazione in eV, trovati in base a queste supposizioni, sono: rame, 323; piombo, 826; uranio, 917; emulsione, 328. I risultati, dedotti dalle misure del potere d’arresto differenziale, sono generalmente in accordo con questi dati. Comunque l’accordo fra le misure differenziali ed i rapporti teorici può essere migliorato elevando i suddetti potenziali medi di eccitazione dell’Al e del Pb od abbassando quelli del rame, dell’uranio e dell’emulsione. Questo esperimento conferma la forma complessiva della curvaI/Z in funzione diZ trovata da Bakker e Segrè, che, analogamente normalizzata, concorda in modo ragionevolmente assoluto. Alla luce di queste e di altre importanti misure abbiamo riveduto la composizione della tabella percorso-energia, Incidentalmente abbiamo eseguito delle osservazioni su comportamento di scattering, straggling ed attenuazione di un fascio monoenergetico di protoni, fortemente collimato, che venne fatto arrestare in un grosso blocco di rame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. J. Lindhard andM. Scharff:Kgl. Danske Videbskab. Selskab, Mat.-fys. Medd.,27, No. 15 (1953).

  2. W. Brandt:Energy Loss and Range of Charged Particles in Compounds, du Pont Radiation Physics Laboratory Report (July, 1960).

  3. C. J. Bakker andE. Segrè:Phys. Rev.,81, 489 (1951).

    Article  ADS  Google Scholar 

  4. R. Mather andE. Segrè:Phys. Rev.,84, 191 (1951).

    Article  ADS  Google Scholar 

  5. For exampleH. Bichsel, R. F. Mozley andW. A. Aron:Phys. Rev.,105, 1788 (1957).

    Article  ADS  Google Scholar 

  6. W. H. Barkas:Nuovo Cimento,8, 201 (1958).

    Article  Google Scholar 

  7. W. H. Barkas, P. H. Barrett, P. Cüer, H. Heckman, F. M. Smith andH. K. Ticho:Nuovo Cimento,8, 91 (1958).

    Article  Google Scholar 

  8. S. von Friesen andW. H. Barkas: Lawrence Radiation Laboratory Report, UCID-613 (Jan. 1959).

  9. H. Bichsel andE. Uehling:Phys. Rev.,119, 1670 (1960).

    Article  ADS  Google Scholar 

  10. B. Rossi:High-Energy Particles (New York, 1952).

  11. R. Sternheimer:Phys. Rev.,117, 1621 (1690).

    Google Scholar 

  12. H. Bichsel: Private correspondence. We are much obliged toDr. Bichsel for being permitted to use his tables before their publication.

  13. M. C. Walske:Phys. Rev.,101, 940 (1956).

    Article  ADS  Google Scholar 

  14. D. C. Sachs andJ. R. Richardson:Phys. Rev.,89, 1163 (1953).

    Article  ADS  Google Scholar 

  15. K. R. MacKenzie:Penetration of Charged Particles in Matter, Report no. 29, Nuclear Science Series, National Research Councils Publication 729.

  16. H. Bichsel:Phys. Rev.,112, 1089 (1958). AlsoH. Bichsel in ref. (5).R. F. Mozley andW. A. Aron:Phys. Rev. 105, 1788 (1957).

    Article  ADS  Google Scholar 

  17. S. von Friesen andW. H. Barkas:Bull. Am. Phys. Soc.,4, 369 (1959).

    Google Scholar 

  18. O. Heinz:Phys. Rev.,94, 1728 (1954).

    Article  ADS  Google Scholar 

  19. H. G. de Carvalho andJ. I. Friedman:Rev. Sci. Inst.,26, 261 (1955).

    Article  ADS  Google Scholar 

  20. D. M. Ritson, A. Pevsner, C. S. Fung, M. Widgoff, G. T. Zorn, S. Goldhaber andG. Goldhaber:Phys. Rev.,101, 1085 (1956).

    Article  ADS  Google Scholar 

  21. R. W. Birge, D. H. Perkins, J. R. Peterson, D. H. Stork andM. N. Whitehead:Nuovo Cimento,4, 834 (1956).

    Article  Google Scholar 

  22. G. Stack Collaboration:Nuovo Cimento Suppl.,4, 398 (1956).

    Article  Google Scholar 

  23. J. Crussard, V. Fouché, G. Kayas, L. Leprince Ringuet, D. Morellet, F. Renard andJ. Trembley:Nuovo Cimento Suppl.,3, 373, 616 (1956).

    Article  Google Scholar 

  24. W. H. Barkas andA. H. Rosenfeld:UCRL-8030, Revised (Sept., 1960).

  25. R. Feldman: Lawrence Radiation Laboratory Report,UCRL-3802 (1957).

  26. M. W. Friedlander, D. Keefer andM. G. K. Menon:Nuovo Cimento,5, 461 (1957).

    Article  Google Scholar 

  27. J. N. Dyer, W. H. Barkas, H. H. Heckman, C. J. Mason, N. A. Nichols andF. M. Smith:Bull. Amer. Phys. Soc.,5, 224 (1960). For more details seeJ. D. Dyer:UCRL-9450.

    Google Scholar 

  28. V. P. Zrelov andG. D. Stoletov:Sov. Phys. JETP,36 (9), 461 (1959).

    Google Scholar 

  29. R. Sternheimer:Phys. Rev.,58, 854 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkas, W.H., von Friesen, S. High-velocity range and energy-loss measurements in Al, Cu, Pb, U and emulsion. Nuovo Cim 19 (Suppl 1), 41–62 (1961). https://doi.org/10.1007/BF02819680

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02819680

Navigation