Skip to main content
Log in

The Padua model of the nucleon and the nucleon-nucleon potential

  • Published:
Il Nuovo Cimento A (1971-1996)

…χρεώ δέ σε πάντα πυϑέσϑαι ήμέν Άλνϑείνξ εϋϰυϰλέoξ άτρεμέξ ήτoρ ήδέ βρoτών δόζαξ, ταίξ oύϰ ένι πίστιξ άληϑήξ. Parmenides, Περί ϕύσεωξ, Fragm. I, 28–30.

Summary

The essential aspects of a new model of the nucleon are developed, and a nucleon-nucleon potential is therefrom deduced in the framework of the meson exchange theory. The preliminary results are promising and the model discloses interesting theoretical perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Notes

  1. T. A. Minelli, A. Pascolini andC. Villi:Nuovo Cimento A,102, 1593 (1989); this paper will be referred to as I. Owing to a series of unfortunate circumstances, this paper was published without proof corrections. The Authors regret that trivial oversights, slips and disappointing misprints disturb the reading of the paper.

    Article  ADS  Google Scholar 

  2. M. L. Goldberger:Proceedings of the Midwestern Conference of Theoretical Physics (Purdue University, Lafayette, Ind., 1960), p. 50.

    Google Scholar 

  3. F. Bopp:Ann. Phys. (Leipzig),38, 345 (1940);B. Podolsky:Phys. Rev.,62, 68 (1942).

    Article  ADS  MathSciNet  Google Scholar 

  4. C. De Vries, R. Hofstadter andR. Herman:Phys. Rev. Lett.,8, 381 (1962);R. Hofstadter:Electron Scattering and Nuclear and Nucleon Structure (Benjamin, New York, N.Y., 1963).

    Article  ADS  Google Scholar 

  5. The detailed understanding of the ephemeral particles created by multi-GeV accelerators nowadays drives high-energy physics closer to those questions which are likely to have existed at the very beginning of the universe, when the nature of the interactions must have been of fundamental relevance while the world as we observe it now was emerging from the «big bang». The possibility of identifying the primeval matter with the nucleonic quark-gluon plasma and of extracting information on the “big bang» by creating in the laboratory a «little bang», which would dissolve the nucleores, is a challenging problem. Within the philosophic horizon of modern theoretical subnuclear physics the nucleonic quark-gluon plasma evokes the idea of the universal dyadlogos-pyr upon which the grand unification conceived by Heraclitus of Ephesus is centered: the world is not an indeterminate agglomeration of essentially distinct components, but a coherent and discoverable system in which changes in one direction are ultimately balanced by corresponding changes in the other, so that a hidden attunement exists between things such that what is apparently «tending apart» is actually «being brought together» (G. S. Kirk:Heraclitus, The Cosmic Fragments (Cambridge University Press, Cambridge, 1954)).

    Google Scholar 

  6. Particle Data Group:Phys. Lett. B,239, 1 (1990).

    Google Scholar 

  7. V. Vento, M. Rho andG. E. Brown:Phys. Lett. B,103, 285 (1981).

    Article  ADS  Google Scholar 

  8. T. A. Minelli, A. Pascolini andC. Villi:Structural and dynamic nonlinearities in meson field models, inConference on Nonlinear Dynamics, Bologna, 30 May–3 June 1988, edited byG. Turchetti (World Scientific, Singapore, 1989);T. A. Minelli, A. Pascolini andC. Villi:Nuovo Cimento A,102, 1431 (1989).

    Google Scholar 

  9. A. P. Prudnikov, Yu. A. Brychkov andO. I. Marichev:Integrals and Series, Vol. I (Gordon and Breach, New York, N.Y., 1968). In order to avoid confusion we have modified the notation adopted by these authors: the symbol θ(z) is used for β(z) and ϑ(z) for ψ(z).

    Google Scholar 

  10. V. G. Bagrov andD. M. Gitman:Exact Solutions of Relativistic Wave Equations of Relativistic Wave Equations (Kluwer Academic Publishers, Dordrecht, 1990).

    Book  MATH  Google Scholar 

  11. G. E. Brown andM. Rho:Phys. Lett. B,82, 177 (1979).

    Article  ADS  Google Scholar 

  12. Although we do not feel at all stifled by the intellectual loneliness which besets scientists working, as we do, outside the main stream of current research, we confess to being not indifferent to the fact that the earliest conception of what, in its final version, is known as Skyrme's model of the baryon, and the construction of the Padua model of the nucleon, have been stimulated by similar attitudes towards the general problems concerning the pointlike description of particles in the framework of linear field theories (with any conceivable renormalization procedure) and by the subsequent search for nonlinear schemes admitting the description of particles as extended objects (R. H. Dalitz:Int. J. Mod. Phys. A,3, 2719 (1988) andV. I. Sanyuk:Genesis and Evolution of the Skyrme Model from 1954 to the Present, Report SU-4228-465, Syracuse University, N.Y., 1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. A. Bethe:Sci. Am.,189, 53 (1953).

    Article  Google Scholar 

  14. P. A. M. Guichon andG. Miller:Phys. Lett. B,134, 15 (1984).

    Article  ADS  Google Scholar 

  15. R. Machleidt, K. Holinde andCh. Elster:Phys. Rep.,149, 1 (1987);R. Machleidt:The meson theory of nuclear forces and nuclear structure, inAdvances in Nuclear Physics, edited byJ. W. Negele andE. Vogt (Plenum Press, New York, N. Y., 1989), Vol.19, pp. 189–376.

    Article  ADS  Google Scholar 

  16. T. E. O. Ericson andW. Weise:Pions and Nuclei (Clarendon Press, Oxford, 1988).

    Google Scholar 

  17. C. Møller andL. Rosenfeld:Kgl. Danske Vid. Selskab, Math.-Fys. Medd.,17, 8 (1940);18, 6 (1941); see alsoJ. Schwinger:Phys. Rev.,61, 387 (1942) andJ. M. Jauch andN. Hu;Phys. Rev.,65, 289 (1944).

    Google Scholar 

  18. S. N. Gupta:Phys. Rev. Lett.,2, 124 (1959).

    Article  ADS  Google Scholar 

  19. T. Derado:Nuovo Cimento,5, 853 (1960).

    Article  Google Scholar 

  20. S. Bergia, A. Stanghellini, S. Fubini andC. Villi:Phys. Rev. Lett.,6, 367 (1961).

    Article  ADS  Google Scholar 

  21. See, for example,J.J. Sakurai:Ann. Phys. (N.Y.),11, 1 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. W. Durso, A. D. Jackson andB. J. Verwest:Nucl. Phys. A,345, 471 (1980).

    Article  ADS  Google Scholar 

  23. K. A. Brueckner andK. M. Watson:Phys. Rev.,90, 699 (1953);92, 1023 (1953); see alsoS. Gartenhaus:Phys. Rev. 100, 900 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Piessens, E. De Doncker-Kapenga, C. Überhuber andD. Kahaner:Quadpack: A Subroutine Package for Automatic Integration (Springer-Verlag, Berlin, 1983).

    Book  MATH  Google Scholar 

  25. E. De Doncker:SIGNUM Newsl.,13, 12 (1978).

    Article  Google Scholar 

  26. NAG:The NAG Fortran Library Manual, Mark 14 (NAG, Oxford, 1990).

    Google Scholar 

  27. T. A. Minelli, A. Pascolini andC. Villi:Atti dell'Istituto Veneto di Scienze, Lettere ed Arti, CXLVI, 63 (1987–1988).

  28. L. Hulthen andM. Sugawara,The two-nucleon problem, inHandbuch der Physik, edited byS. Flugge (Springer-Verlag, Berlin, 1957), band XXXIX, p. 1.

    Google Scholar 

  29. C. van der Leun andC. Alderliesten:Nucl. Phys. A,380, 261 (1982).

    Article  ADS  Google Scholar 

  30. T. E. O. Ericson andM. Rosa-Clot:Nucl. Phys. A,405, 497 (1983).

    Article  ADS  Google Scholar 

  31. I. Lindgren:Table of nuclear spins and moments, inAlpha-, Beta-, Gamma-Spectroscopy, edited byK. Siegbahn (North-Holland, Amsterdam, 1965), Vol. II, p. 1623.

    Google Scholar 

  32. I. Borbely, W. Grüebler, V. König, P. A. Schmelzbach andB. Jenny:Phys. Lett B,109, 262 (1982).

    Article  ADS  Google Scholar 

  33. S. Klarsfeld, J. Martorell andD. W. L. Sprung:J. Phys. G,10, 165 (1985).

    Article  ADS  Google Scholar 

  34. W. H. Press, B. P. Flannery, S. A. Teukolsky andW. T. Vetterling:Numerical Recipes (Cambridge University Press, Cambridge, 1986), Ch. 16.

    Google Scholar 

  35. J. H. Wilkinson andC. Reinsch:Handbook for Automatic Computation (Springer-Verlag, Berlin, 1971) Vol. II,Linear Algebra, p. 339, 359 and 418.

    Book  MATH  Google Scholar 

  36. M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Costé, P. Pirès andR. De Tourreil:Phys. Rev. C,21, 861 (1980).

    Article  ADS  Google Scholar 

  37. W. B. Wiringa, R. A. Smith andT. L. Ainsworth:Phys. Rev. C,29, 1207 (1984).

    Article  ADS  Google Scholar 

  38. I. L. Grach, Yu. S. Kalashnikova andI. M. Narodetskii:J. Phys. G,16, 63 (1990).

    Article  ADS  Google Scholar 

  39. O. Dumbrais, R. Koch, H. Pilkuhn, G. C. Oades, H. Behrens, J. J. de Swart andP. Kroll:Nucl. Phys. B,216, 277 (1983).

    Article  ADS  Google Scholar 

  40. T. E. O. Ericson andM. Rosa-Clot:Phys. Rev. Lett. B,110, 193 (1982);J. Phys. G,10, L201 (1984).

    Article  ADS  Google Scholar 

  41. See, for example,S. L. Shapiro andS. A. Teukolsky:Black Holes, White Dwarfs and Neutron Stars (John Wiley Interscience, New York, N.Y., 1983). As already mentioned, we intend to useW JLST (x) in nuclear-matter calculations. This future research program deserves some comments. The many-body problem of quantum systems composed by fermions is nowadays one of the major cross-roads for nuclear and elementary-particle physics, for the theory of Fermi liquids and electron gas and for the theories of superfluidity and superconductivity. In spite of the remarkable successes so far achieved, it is difficult to assess whether in the restricted realm of nuclear physics the many-particle picture of nuclear matter, as is still currently used, is based on mathematical techniques and physical assumptions which are entirely reliable or not: consequently one cannot exclude the risk that the Padua potential might be jeopardized by them. To overcome this disturbing suspicion, a simple approach to the nuclear matter problem has been developed in order to provide reference results for more refined calculations (T. A. Minelli, A. Pascolini andC. Villi:Atti e Memorie dell'Accademia Patavina di Scienze, Lettere ed Arti, C, 197 (1987–88)). Our approach is based upon the following considerations. In the spirit of the Fermi gas model the Pauli principle allows only those scattering processes for which the final states of both nucleons have momental larger than the limiting momentum κ, quantitatively specified at the minimum of the total energy. Starting from levels below κ, such scattering processes obviously defy conservation of energy: hence there is no real scattering in nuclear matter and the asymptotic wave functions contain no scattering phaseshifts. The presence of virtual scattering processes above κ has the effect of distorting the wave functions at short distances: the effect of nucleon-nucleon interactions, by causing virtual trnasitions from occupied states into unoccupied ones, is to spread the momentum distribution of single noninteracting nucleons in the neighbourhood of the limiting momentum κ, lowering the density in momentum space below κ and giving rise to a tail in the distribution above κ. The deviation of the resulting nonuniform momentum distributionf(p) from the uniform one, expressed by the Heaviside functionH(κ-p), is indicative also of the nucleon-nucleon correlations in nuclear matter: it can be formally represented by means of a Fermi function describing thermal agitation at a «nuclear temperature» τ. This approach, which circumvents from the beginning the arbitrariness of the choices of diagrams related to the sequel of unobservable processes used to «construct» the effective nonuniform momentum distribution (B. D. Day:Rev. Mod. Phys.,39, 719 (1967), is promising: in fact, «hot momentum distributions (τ≠0)» in the lowest approximation of the Hartree-Fock method are found to be equivalent to «cold momentum distributions (τ=0)» modified by cluster expansions and by a density-dependentK-matrix (Brueckner's theory). The outlined approach allows one to deal with the problem of nuclear matter using analytically simple and numerically manageable procedures, capable of disentangling the role played by the two-nucleon potentialW JLST (x) from the many-body effects which tend to conceal it (in particular, the total antisymmetry of the nuclear wave function) (T. A. Minelli, A. Pascolini andC. Villi:Nuovo Cimento A,87, 261 (1985).

    Book  Google Scholar 

  42. E. L. Lomon:Ann. Phys. (N.Y.),125, 309 (1980).

    Article  ADS  Google Scholar 

  43. S. Platchkov, A. Amroun, S. Auffret, J. M. Cavedon, P. Dreux, J. Duclos, B. Frois, D. Goutte, H. Hacheni, J. Martino, X. H. Phan andI. Sick:Nucl. Phys. A,510, 740 (1990).

    Article  ADS  Google Scholar 

  44. G. G. Simon, Ch. Schmitt, F. Borkowski andV. H. Walter:Nucl. Phys. A,333, 381 (1980).

    Article  ADS  Google Scholar 

  45. G. G. Simon, Ch. Schmitt andV. H. Walther:Nucl. Phys. A,364, 285 (1981);S. Gaister, H. Klein, J. Moritz, K. H. Schmidt andD. Wegener:Nucl. Phys. B,32, 221 (1971);F. Martin, R. G. Arnold, B. T. Chertok, E. B. Dally, A. Grigorian, C. L. Jordan, W. P. Schütz, R. Zdarko, B. A. Mecking:Phys. Rev. Lett.,38, 1320 (1977);C. D. Buchanan andM. R. Yerian:Phys. Rev. Lett.,15, 303 (1965);J. E. Elias, J. I. Friedman, G. C. Hartmann, H. W. Kendall, P. N. Kirk, M. R. Sogard, L. P. Van Speybroeck andJ. K. de Pagter:Phys. Rev.,177, 2065 (1969);R. Cramer, M. Renkhoff, J. Drees, U. Ecker, D. Jagoda, K. Koseck, G.-R. Pingel, B. Remenschnitter, A. Ritterskamp, B. Boden, V. Burkert, G. Knop, M. Leenen, R. Sauerwein andD. Schablitzky:Z. Phys. C,29, 513 (1985);S. Auffret, J. M. Cavedon, J. C. Clemens, B. Frois, D. Goutte, M. Huet, Ph. Leconte, J. Martino, Y. Mizuno, X. H. Phan, S. Platchkov andI. Sick:Phys. Rev. Lett.,54, 649 (1985);R. G. Arnold, D. Benton, P. Bosted, L. Clogher, G. DeChambrier, A. T. Katramatou, J. Lambert, A. Lung, G. G. Petratos, A. Rahbar, S. E. Rock, Z. M. Szalata, R. A. Gearhart, B. Debebe, M. Frodyma, R. S. Hicks, A. Hotta, G. A. Peterson, J. Alster, J. Lichtenstadt, F. Dietrich andK. Van Bibber:Phys. Rev. Lett.,58, 1723 (1985); and [46].

    Article  ADS  Google Scholar 

  46. See fig. 17 andJ. Pauschenwein, L. Mathelitsch andW. Plessas:Nucl. Phys. A,508, 253c (1990).

    Article  ADS  Google Scholar 

  47. Yu. K. Akimov, A. N. Arvanov, G. V. Badalyan, A. E. Banifatov, D. M. Beglaryan, P. N. Bedrosyan, S. I. Bilen'kaya, K. Borcea, T. A. Vartanyan, M. A. Garzoyan, D. Dorchoman, G. G. Zograbyan, Yu. M. Kazarinov, A. I. Kalinin, V. S. Kiselev, L. I. Lapidus, G. E. Markaryan, G. I. Melikov, Ya. D. Nersesyan, O. I. Pasoyan, M. Petrascu, V. S. Pogosov, I. P. Prokhorenko, A. M. Chatrchyan andS. A. Shatiev:Sov. J. Nucl. Phys.,29, 335 (1979).

    Google Scholar 

  48. A. E. S. Green andT. Sawada:Rev. Mod. Phys.,39, 594 (1967);T. Ueda andA. E. S. Green:Phys. Rev.,174, 1304 (1968).

    Article  ADS  Google Scholar 

  49. R. A. Arndt, D. Roper, R. A. Bryan, R. B. Clark, B. J. Verwest andP. Signell:Phys. Rev. D,28, 97 (1983).

    Article  ADS  Google Scholar 

  50. T. A. Minelli, A. Pascolini andC. Villi:Nuovo Cimento A,101, 1029 (1989).

    Article  ADS  Google Scholar 

  51. G. Birkoff:Hydrodynamics (Princeton University Press, Princeton, N.J., 1950). For our purposes indicative predictions on the behaviour ofm(x) can be obtained provided the fluid-mechanical model sketched above is substantially improved by replacing the «pionic fluid» with a «mesonic fluid», characterized also by localized vortex-like structures and by a diffused vorticity accounting for the existence of the intermediate massv-mesons and respectively for the nucleon spin. Consequently, the calculation ofm(x) according to the criterion previously specified becomes more complicated than it may appear at first. It is worthwhile recalling that the idea of conceiving the charged pion fields as condensed

    Google Scholar 

  52. Before undergoing precision tests ofW JLST (x)→*W JLST (x;k) by comparing the predicted phaseshifts with those extracted from the data, the potential must be properly modified in order to account for a variety of physical features which have been ignored in the course of its construction (n-p mass difference, mass splitting of pions, Coulomb interaction between protons, isospin mixing, vacuum polarization effects, etc.). To take such a research program wisely to the end, the following general remarks might be useful. The phaseshift analyses so far performed are based on incomplete sets of data, mainly differential and total cross-sections and on scarce information on polarization, depolarization, spin-correlation and triple-scattering effects (M. H. McGregor, M. J. Moravcsik andH. P. Stapp:Annu. Rev. Nucl. Sci.,10, 291 (1960)). Consequently, the interpretation of the agreement or disagreement of the calculated phaseshifts with the «experimental» ones becomes uncertain: in fact, one cannot exclude that a two-nucleon potential, constructed on a very sound physical ground, might disclose more physical information than that disguised by phaseshifts determined from very incomplete sets of data. The method of fitting the phaseshifts to the data consists in the minimization of χ2 as a function ofN unknown parameters (the phaseshifts up toL max≃(1/m π)√2mE and the coupling constants measuring the amount of admixtures of states with the same orbital parity): this procedure, which implies an overall search for the valleys of anN-dimensional surface, might lead to misleading results, because no absolute criterion exists for identifying the physically meaningful minimum of χ2 and consequently for rejecting spurious phaseshift solutions (P. Signell andJ. Holdemann jr.:Phys. Rev. Lett.,27, 1393 (1971)). These considerations breed the suspicion that phaseshift solutions, different from those quoted in the literature, might have been lost in the vagaries of searching the minima of χ2 using electronic computers in a more or less blind manner. These nagging doubts are reinforced by the χ2, namely by the ascertained existence at a given scattering energy of a manifold of phaseshift solutions associated to a unique value of the minimum of χ2 (E. Clementel andC. Villi:Nuovo Cimento,5, 1166 (1957)). The number of phaseshift sets satisfying the data equally well increases with energy, while their mathematical properties also become more and more intriguing because the sign ambiguity of the real part of the forward elastic-scattering amplitude varies with energy. The continuity prescription is by itself insufficient to follow the variation with energy of all the sets of phaseshifts because of the crossing of the phaseshifts belonging to different sets or because phaseshifts of different sets join together. For a reliable selection of the physical phaseshift solutions from the manifold of mathematical ones one must resort to additional information provided by polarization, depolarization, spin-correlation and triple-scattering experiments, which—as already pointed out—are insufficient or lacking. In conclusion, in performing precision tests ofW JLST (x) one should remember that the enormous amount of work devoted to phaseshift analyses might have only scratched the surface of the general problem of theexperimental determination of the intimate features of nucleon-nucleon interaction. Whether or not the above remarks are completely overcome by more refined computational strategies used nowadays, is not clearly stated in the current literature. It is worthwhile to mention the promising efforts of the Nijmegen Group in this field [59].

    Article  ADS  Google Scholar 

  53. R. K. Bhaduri:Models of the Nucleon (Addison-Wesley, Redwood City, Cal., 1988), p. 68.

    Google Scholar 

  54. T. A. Griffy andL. I. Schiff:High Energy Physics (Academic Press, New York, N.Y., 1967).

    Google Scholar 

  55. G. J. M. Austern andJ. J. de Swart:Phys. Rev. Lett.,50, 2039 (1983).

    Article  ADS  Google Scholar 

  56. J. R. Bergervoet, P. C. van Campen, R. A. M. Klomp, J.-L. de Kok, T. A. Rijken, V. G. J. Stoks andJ. J. de Swart:Phys. Rev. C,41, 1435 (1990).

    Article  ADS  Google Scholar 

  57. W. Lucha, F. F. Schöberland andD. Gromes:Phys. Rep.,200, 127 (1991).

    Article  ADS  Google Scholar 

  58. G. Bhanot andS. Rudaz:Phys. Lett. B,78, 119 (1978).

    Article  ADS  Google Scholar 

  59. The value of the ps(ps) coupling constant given by the first of relations (11.58) differs by approximately 1% from the value of the ratio 2M/m π introduced by (2.31): this suggests puttingm π=2M(4π/g 2π ). We became aware of this property after the completion of the numerical calculations performed using value (9.6a); we look forward to revising all the results reported in sect.10 assuming α=13 and the ps(pv) coupling constantf 2/4π=m π/2M=0.07351. As far as we know valueg 2π /4π=13.676, differing fromg 2π /4π=13.408 by about 1.5%, has been used in the earliest computations with the Nijmegen potential (M. M. Nagels, T. A. Rijken andJ. J. de Swart:Phys. Rev. D,17, 768 (1978)); see alsoJ. J. de Swart, T. A. Rijken, J. R. M. Bergervoet, P. C. M. van Campen, W. M. G. Derks andW. A. M. v. d. Sanden:The nucleon-nucleon interaction, inTheoretical and Experimental Investigations of Hadronic Few-Body Systems, edited byC. Ciofi degli Atti, O. Benhar, E. Pace andG. Salmè (Springer-Verlag, Wien, 1986), pp. 1–12).

    Article  ADS  Google Scholar 

  60. G. N. Lewis andE. Q. Adams:Phys. Rev.,3, 92 (1911).

    Article  Google Scholar 

  61. J. Perles:Naturwissenschaften,17, 1904 (1928).

    Google Scholar 

  62. D. Barrow andF. J. Tipler:The Anthropic Cosmological Principle (Clarendon Press, Oxford, 1986).

    Google Scholar 

  63. N. Rosen:Phys. Rev.,72, 398 (1947). See alsoA. M. March:Naturwissenschaften,40, 649 (1938);W. Heisenberg:Z. Phys.,120, 513 (1943);H. S. Snyder:Phys. Rev.,71, 38 (1947). It bas been recognized from the very beginning that the roots of many conceptual troubles lie in the description of point interactions between matter and fields required in order to build up a relativistically invariant Hamiltonian theory. The attempts to construct quantum mechanics assuming the existence of a limiting distancel 0 for the spatial coordinates or, more generally, by arguing that spatial coordinates and time should be treated as operators having eigenvalues which are integral multiples of a fundamental timelike distanceL 0 have been revived in recent years (H. Mehlberg:Time, Causality and the Quantum Theory (D. Reidel, Dordrecht, 1980), Vol. II, p. 219–224), but have never been exhaustively worked out and ultimately discarded. The forthcoming illustrative application of the former view point to nucleon-nucleon interaction has never been examined before.

    Article  ADS  Google Scholar 

  64. M. Born andG. Rumer:Z. Phys.,69, 141 (1931).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now shalt thou hear of all things, of well-rounded Truth's unmoved heart and of mortals' opinions, in which there is no true assurance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minelli, T.A., Pascolini, A. & Villi, C. The Padua model of the nucleon and the nucleon-nucleon potential. Il Nuovo Cimento A (1971-1996) 104, 1589–1684 (1991). https://doi.org/10.1007/BF02819659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02819659

PACS 21.30

Navigation