Skip to main content
Log in

Biotransformation of trichloroethene by pure bacterial cultures

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

From natural samples 11 isolates able to remove trichloroethene (CCl2CHl) from an aqueousenvironment were obtained which were capable of cometabolic degradation of CCl2CHCl by an enzyme system for phenol degradation. At an initial CCl2CHCl concentration of 1 mg/L, the resting cells of particular cultures degraded 33–94% CCl2CHCl during 1 d and their transformation capacity ranged from 0.3 to 3.1 mg CCl2CHCl per g organic fraction. An analysis of a mixed phenol-fed culture with an excellent trichloroethene-degrading ability found a markedly minority isolate represented in the consortium to be responsible for this property. This culture degraded CCl2CHCl even at a low inoculum concentration and attained a transformation capacity of 14.7 mg CCl2CHCl per g. The increase in chloride concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. The degree of CCl2CHCl degradation was affected by Me2S2; this substance can significantly reduce the degrading ability of some tested cultures (>60%); however, it does not cause this inhibition with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arciero D., Vannelli T., Logan M., Hooper A.B.: Degradation of trichloroethylene by the ammonia-oxidizing bacteriumNitrosomonas europeaea.Biochem. Biophys. Res. Commun. 159, 640–643 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Chang H.L., Alvarez-Cohen L.: Transformation capacities of chlorinated organics by mixed cultures enriched on methane, progane, toluene or phenol.Biotechnol. Bioeng. 45 440–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Dabrock B., Riedel J., Bertram J., Gottschalk G.: Isopropylbenzene (cumene)—a new substrate for the isolation of trichloroethene-degrading bacteria.Arch. Microbiol. 158, 9–13 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Ensign S.A., Hyman M.R., Arp D.J.: Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grownXanthobacter strain.Appl. Environ. Microbiol. 58, 3038–3046 (1992).

    PubMed  CAS  Google Scholar 

  • Folsom B.R., Chapman P.J., Pritchard P.H.: Phenol and trichloroethylene degradation byPseudomonas cepacia G4: kinetics and interaction between substrates.Appl. Environ. Microbiol.,56, 1279–1285 (1990).

    PubMed  CAS  Google Scholar 

  • Fries M.R., Forney L.J., Tiedje J.M.: Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred.Appl. Environ. Microbiol..63, 1523–1530 (1997).

    PubMed  CAS  Google Scholar 

  • Futamata H., Watanabe K., Harayama S.: Relationships between the trichlorethylene-degrading activities and the amino acid sequences of phenol hydroxylases in phenol-degrading bacteria.Battelle 1st Internat. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Monterey (CA) 1998.

  • Ginzburg B., Chalifa I., Hadas O., Dor I., Lev O.: Formation of dimethyloligosulfides in lake Kinneret.Water Sci. Technol. 40, 73–78 (1999).

    Article  CAS  Google Scholar 

  • Ginzburg B., Chalifa I., Zohari T., Hadas O., Dor I., Lev O.: Identification of oligosulfide odorous compounds and their source in the sea of Galilee.Water Res. 32, 1789–1800 (1998).

    Article  CAS  Google Scholar 

  • Hopkins G.D., Munakata J., Semprini L., McCarty P.L.: Trichloroethylene concentration effects on pilot field-scalein situ groundwater bioremediation by phenol-oxidizing microorganisms.Environ. Sci. Technol. 27, 2542–2547 (1993).

    Article  CAS  Google Scholar 

  • Hopkins G.D., McCarty P.L.: Field evaluation ofin situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates.Environ. Sci. Technol. 29, 1628–1637 (1995).

    Article  CAS  Google Scholar 

  • Ishida H., Nakamura K.: Trichloroethylene degradation byRalstonia sp. KN1-10A constitutively expressing phenol hydroxylase: transformation products, NADH limitation, and product toxicity.J. Biosci. Bioeng. 89, 438–445 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki I., Utsumi S., Ozawa T.: New colorimetric determination of chloride using mercuric thiocyanate and ferric ions.Bull. Chem. Soc. Japan. 25, 226 (1952).

    Article  CAS  Google Scholar 

  • Kyung K.H., Fleming H.P.: Antimicrobial activity of sulphur compounds derived from cabbage.J. Food. Prot. 60, 67–71 (1997).

    PubMed  CAS  Google Scholar 

  • Saeki H., Akira M., Furuhashi K., Averhoff B., Gottschalk G.: Degradation of trichloroethylene by a linear-plasmid-encoded alkene monooxygenase inRhodococcus corallinus (Nocardia corallina) B-276.Microbiology 145, 1721–1730 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Schöller C., Molin S., Wilkins K.: Volatile metabolites from some gramnegative bacteria.Chemosphere 35, 1487–1495 (1997).

    Article  PubMed  Google Scholar 

  • Shih C., Davey M.E., Zhou J., Tiedje J.M., Criddle C.S.: Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene.Appl. Environ. Microbiol. 62, 2953–2960 (1996).

    PubMed  CAS  Google Scholar 

  • Shurtliff M.M., Parkin G.F., Weathers L.J., Gibson D.T.: Biotransformation of trichloroethylene by a phenol-induced mixed culture.J. Environ. Eng. 122, 581–589 (1996).

    Article  CAS  Google Scholar 

  • Steffan R.J., Sperry K.L., Walsh M.T., Vainberg S., Condee C.W.: Field-scale evaluation ofin situ bioaugmentation for remediation of chlorinated solvents in groudwater.Environ. Sci. Technol. 33, 2771–2781 (1999).

    Article  CAS  Google Scholar 

  • Sun A.K., Hong J., Wood T.K.: Modeling trichloroethylene degradation by a recombinant pseudomonad expressing tolueneortho-monooxygenase in a fixed-film bioreactor.Biotechnol. Bioeng. 59, 40–51 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sun A.K., Wood T.K.: Trichloroethylene degradation and mineralization by pseudomonads andMethylosinus trichosporium OB3b.Appl. Microbiol. Biotechnol. 45, 248–256 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Takami W., Horinouchi M., Nojiri H., Yamane H., Omori T.: Evaluation of trichloroethylene degradation byE. coli transformed with dimethylsulphide monooxygenase genes and/or cumene dioxygenase genes.Biotechnol. Lett. 21, 259–264 (1999).

    Article  CAS  Google Scholar 

  • Tomita B., Inoue H., Chaya K., Nakamura A., Hamamura N., Ueno K., Watanabe K., Ose Y.: Identification of dimethyl disulfide-forming bacteria isolated from activated sludge.Appl. environ. Microbiol. 53, 1541–1547 (1987).

    PubMed  CAS  Google Scholar 

  • Vogel T.M., Criddle C.S., McCarty P.L.: Transformations of halogenated aliphatic compounds.Environ. Sci. Technol. 21, 722–736 (1987).

    Article  CAS  Google Scholar 

  • Wilson J.T., Wilson B.H.: Biotransformation of trichloroethylene in soil.Appl. Environ. Microbiol. 49 242–243 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Růžička, J., Müller, J., Vít, D. et al. Biotransformation of trichloroethene by pure bacterial cultures. Folia Microbiol 47, 467–472 (2002). https://doi.org/10.1007/BF02818782

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818782

Keywords

Navigation